Skip to main content
Log in

Genomic analysis of severe hypersensitivity to hygromycin B reveals linkage to vacuolar defects and new vacuolar gene functions in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The vacuole of Saccharomyces cerevisiae has been a seminal model for studies of lysosomal trafficking, biogenesis, and function. Several yeast mutants defective in such vacuolar events have been unable to grow at low levels of hygromycin B, an aminoglycoside antibiotic. We hypothesized that such severe hypersensitivity to hygromycin B (hhy) is linked to vacuolar defects and performed a genomic screen for the phenotype using a haploid deletion strain library of non-essential genes. Fourteen HHY genes were initially identified and were subjected to bioinformatics analyses. The uncovered hhy mutants were experimentally characterized with respect to vesicular trafficking, vacuole morphology, and growth under various stress and drug conditions. The combination of bioinformatics analyses and phenotypic characterizations implicate defects in vesicular trafficking, vacuole fusion/fission, or vacuole function in all hhy mutants. The collection was enriched for sensitivity to monensin, indicative of vacuolar trafficking defects. Additionally, all hhy mutants showed severe sensitivities to rapamycin and caffeine, suggestive of TOR kinase pathway defects. Our experimental results also establish a new role in vacuolar and vesicular functions for two genes: PAF1, encoding a RNAP II-associated protein required for expression of cell cycle-regulated genes, and TPD3, encoding the regulatory subunit of protein phosphatase 2A. Thus, our results support linkage between severe hypersensitivity to hygromycin B and vacuolar defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali R, Brett CL, Mukherjee S, Rao R (2004) Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279(6):4498–4506

    Article  CAS  PubMed  Google Scholar 

  • Aronova S, Wedaman K, Anderson S, Yates J, Powers T (2007) Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell 18(8):2779–2794

    Article  CAS  PubMed  Google Scholar 

  • Bankaitis VA, Johnson LM, Emr SD (1986) Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci USA 83(23):9075–9079

    Article  CAS  PubMed  Google Scholar 

  • Banta LM, Robinson JS, Klionsky DJ, Emr SD (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107(4):1369–1383

    Article  CAS  PubMed  Google Scholar 

  • Bergkessel M, Reese JC (2004) An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics 167(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Blackburn AS, Avery SV (2003) Genome-wide screening of Saccharomyces cerevisiae to identify genes required for antibiotic insusceptibility of eukaryotes. Antimicrob Agents Chemother 47(2):676–681

    Article  CAS  PubMed  Google Scholar 

  • Bonangelino CJ, Chavez EM, Bonifacino JS (2002) Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13(7):2486–2501

    Article  CAS  PubMed  Google Scholar 

  • Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744(3):438–454

    Article  CAS  PubMed  Google Scholar 

  • Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO:TermFinder—open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20(18):3710–3715

    Article  CAS  PubMed  Google Scholar 

  • Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16(3):1396–1405

    Article  CAS  PubMed  Google Scholar 

  • Bryant NJ, James DE (2001) Vps45p stabilizes the syntaxin homologue Tlg2p and positively regulates SNARE complex formation. EMBO J 20(13):3380–3388

    Article  CAS  PubMed  Google Scholar 

  • Bryant NJ, Stevens TH (1998) Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 62(1):230–247

    CAS  PubMed  Google Scholar 

  • Cabañas MJ, Vázquez D, Modolell J (1978) Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem Biophys Res Commun 83(3):991–997

    Article  PubMed  Google Scholar 

  • Chang M, French-Cornay D, Fan HY, Klein H, Denis CL, Jaehning JA (1999) A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol Cell Biol 19(2):1056–1067

    CAS  PubMed  Google Scholar 

  • Chen C, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-Type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147(6):1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Conboy MJ, Cyert MS (2000) Luv1p/Rki1p/Tcs3p/Vps54p, a yeast protein that localizes to the late Golgi and early endosome, is required for normal vacuolar morphology. Mol Biol Cell 11(7):2429–2443

    CAS  PubMed  Google Scholar 

  • Conibear E, Stevens TH (1998) Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim Biophys Acta 1404(1–2):211–230

    CAS  PubMed  Google Scholar 

  • Conibear E, Stevens TH (2000) Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 11(1):305–323

    CAS  PubMed  Google Scholar 

  • Dudley AM, Janse DM, Tanay A, Shamir R, Church GM (2005) A global view of pleiotropy and phenotypically derived gene function in yeast. Mol Syst Biol 1:2005.0001

    Google Scholar 

  • Facchin S, Ruzzene M, Peggion C, Sartori G, Carignani G, Marin O, Brustolon F, Lopreiato R, Pinna LA (2007) Phosphorylation and activation of the atypical kinase p53-related protein kinase (PRPK) by Akt/PKB. Cell Mol Life Sci 64(19):2680–2689

    Article  CAS  PubMed  Google Scholar 

  • Fagarasanu A, Rachubinski RA (2007) Orchestrating organelle inheritance in Saccharomyces cerevisiae. Curr Opin Microbiol 10(6):528–538

    Article  CAS  PubMed  Google Scholar 

  • Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12(8):2396–2411

    CAS  PubMed  Google Scholar 

  • Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5(4):317–323

    Article  CAS  PubMed  Google Scholar 

  • Guan XL, Souza CM, Pichler H, Dewhurst G, Schaad O, Kajiwara K, Wakabayashi H, Ivanova T, Castillon GA, Piccolis M, Abe F, Loewith R, Funato K, Wenk MR, Riezman H (2009) Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol Biol Cell 20(7):2083–2095

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson M, Barmark G, Larsson J, Murén E, Ronne H (2008) Functional genomics of monensin sensitivity in yeast: implications for post-Golgi traffic and vacuolar H+-ATPase function. Mol Genet Genomics 280(3):233–248

    Article  CAS  PubMed  Google Scholar 

  • Herman PK, Emr SD (1990) Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 10(12):6742–6754

    CAS  PubMed  Google Scholar 

  • Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St. Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320(5874):362–365

    Article  CAS  PubMed  Google Scholar 

  • Hoon S, St Onge RP, Giaever G, Nislow C (2008) Yeast chemical genomics and drug discovery: an update. Trends Pharmacol Sci 29(10):499–504

    Article  CAS  PubMed  Google Scholar 

  • Horazdovsky BF, DeWald DB, Emr SD (1995) Protein transport to the yeast vacuole. Curr Opin Cell Biol 7(4):544–551

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Kao CY, Hudson RT, Chen A, Draper RK (1999) Inhibition of secretion by 1, 3-Cyclohexanebis(methylamine), a dibasic compound that interferes with coatomer function. Mol Biol Cell 10(4):921–933

    CAS  PubMed  Google Scholar 

  • Hua Z, Fatheddin P, Graham TR (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13(9):3162–3177

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6(15):1837–1849

    CAS  PubMed  Google Scholar 

  • Hudson RT, Draper RK (1997) Interaction of coatomer with aminoglycoside antibiotics: evidence that coatomer has at least two dilysine binding sites. Mol Biol Cell 8(10):1901–1910

    CAS  PubMed  Google Scholar 

  • Hughes WE, Woscholski R, Cooke FT, Patrick RS, Dove SK, McDonald NQ, Parker PJ (2000) SAC1 Encodes a Regulated Lipid Phosphoinositide Phosphatase, Defects in Which Can Be Suppressed by the Homologous Inp52p and Inp53p Phosphatases. J Biol Chem 275(2):801–808

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E (2008) What controls TOR? IUBMB Life 60(8):483–496

    Article  CAS  PubMed  Google Scholar 

  • Johnson LM, Bankaitis VA, Emr SD (1987) Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48(5):875–885

    Article  CAS  PubMed  Google Scholar 

  • Jones EW (1977) Proteinase mutants of Saccharomyces cerevisiae. Genetics 85(1):23–33

    CAS  PubMed  Google Scholar 

  • Jones EW, Webb GC, Hiller MA (1997) Molecular biology of the yeast Saccharomyces cerevisiae, vol 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 363–469

    Google Scholar 

  • Ka M, Park Y, Kim J (2008) The DEAD-box RNA helicase, Dhh1, functions in mating by regulating Ste12 translation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 367(3):680–686

    Article  CAS  PubMed  Google Scholar 

  • Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3(12):893–905

    Article  CAS  PubMed  Google Scholar 

  • Katzmann DJ, Stefan CJ, Babst M, Emr SD (2003) Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol 162(3):413–423

    Article  CAS  PubMed  Google Scholar 

  • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152(3):519–530

    Article  CAS  PubMed  Google Scholar 

  • Koren R, Rainis L, Kleinberger T (2004) The scaffolding A/Tpd3 subunit and high phosphatase activity are dispensable for Cdc55 function in the Saccharomyces cerevisiae spindle checkpoint and in cytokinesis. J Biol Chem 279(47):48598–48606

    Article  CAS  PubMed  Google Scholar 

  • Kuranda K, Leberre V, Sokol S, Palamarczyk G, François J (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61(5):1147–1166

    Article  CAS  PubMed  Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69(2):262–291

    Article  CAS  PubMed  Google Scholar 

  • Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793(4):650–663

    Article  CAS  PubMed  Google Scholar 

  • Lombardi R, Riezman H (2001) Rvs161p and Rvs167p, the two yeast amphiphysin homologs, function together in vivo. J Biol Chem 276(8):6016–6022

    Article  CAS  PubMed  Google Scholar 

  • Luzio JP, Bright NA, Pryor PR (2007) The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35(Pt 5):1088–1091

    CAS  PubMed  Google Scholar 

  • Martínez-Muñoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283(29):20309–20319

    Article  PubMed  Google Scholar 

  • McGaha SM, Champney WS (2007) Hygromycin B inhibition of protein synthesis and ribosome biogenesis in Escherichia coli. Antimicrob Agents Chemother 51(2):591–596

    Article  CAS  PubMed  Google Scholar 

  • Mijaljica D, Prescott M, Klionsky DJ, Devenish RJ (2007) Autophagy and vacuole homeostasis: a case for self-degradation? Autophagy 3(5):417–421

    CAS  PubMed  Google Scholar 

  • Moehle CM, Aynardi MW, Kolodny MR, Park FJ, Jones EW (1986) Protease B of Saccharomyces cerevisiae: Isolation and regulation of the PRB1 structural gene. Genetics 115:255–263

    Google Scholar 

  • Moniaux N, Nemos C, Schmied BM, Chauhan SC, Deb S, Morikane K, Choudhury A, Vanlith M, Sutherlin M, Sikela JM, Hollingsworth MA, Btra SK (2006) The human homologue of the RNA polymerase II-associated factor 1 (hPaf1), localized on the 19q13 amplicon, is associated with tumorigenesis. Oncogene 25(23):3247–3257

    Article  CAS  PubMed  Google Scholar 

  • Moriya H, Isono K (1999) Analysis of genetic interactions between DHH1, SSD1 and ELM1 indicates their involvement in cellular morphology determination in Saccharomyces cerevisiae. Yeast 15(6):481–496

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Kallay L, Brett CL, Rao R (2006) Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking. Biochem J 398(1):97–105

    Article  CAS  PubMed  Google Scholar 

  • Munn AL, Riezman H (1994) Endocytosis is required for the growth of vacuolar H(+)-ATPase-defective yeast: identification of six new END genes. J Cell Biol 127(2):373–386

    Article  CAS  PubMed  Google Scholar 

  • Ni L, Snyder M (2001) A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 12(7):2147–2170

    CAS  PubMed  Google Scholar 

  • Nothwehr SF, Stevens TH (1994) Sorting of membrane proteins in the yeast secretory pathway. J Biol Chem 269(14):10185–10188

    CAS  PubMed  Google Scholar 

  • Ostrowicz CW, Meiringer CTA, Ungermann C (2008) Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics. Autophagy 4(1):5–19

    CAS  PubMed  Google Scholar 

  • Park I, Erbay E, Nuzzi P, Chen J (2005) Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1. Exp Cell Res 309(1):211–219

    Article  CAS  PubMed  Google Scholar 

  • Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost R, Ho C (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126(3):611–625

    Article  CAS  PubMed  Google Scholar 

  • Pelham HRB (2002) Insights from yeast endosomes. Curr Opin Cell Biol 14(4):454–462

    Article  CAS  PubMed  Google Scholar 

  • Piper RC, Katzmann DJ (2007) Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol 23:519–547

    Google Scholar 

  • Porter SE, Washburn TM, Chang M, Jaehning JA (2002) The yeast pafl-rNA polymerase II complex is required for full expression of a subset of cell cycle-regulated genes. Eukaryot Cell 1(5):830–842

    Article  CAS  PubMed  Google Scholar 

  • Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3(12):1389–1402

    CAS  PubMed  Google Scholar 

  • Redding K, Seeger M, Payne GS, Fuller RS (1996) The effects of clathrin inactivation on localization of Kex2 protease are independent of the TGN localization signal in the cytosolic tail of Kex2p. Mol Biol Cell 7(11):166716–166777

    Google Scholar 

  • Reinke A, Chen JC, Aronova S, Powers T (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 281(42):31616–31626

    Article  CAS  PubMed  Google Scholar 

  • Ripmaster TL, Vaughn GP, Woolford JL (1993) DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae. Mol Cell Biol 13(12):7901–7912

    CAS  PubMed  Google Scholar 

  • Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8(11):4936–4948

    CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Coelho PS, Roemer T, Agarwal S, Kumar A, Jansen R, Cheung K-H, Sheehan A et al (1999) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402(6760):413–418

    Article  CAS  PubMed  Google Scholar 

  • Rothman JH, Stevens TH (1986) Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47(6):1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260(5104):88–91

    Article  CAS  PubMed  Google Scholar 

  • Seeley ES, Kato M, Margolis N, Wickner W, Eitzen G (2002) Genomic analysis of homotypic vacuole fusion. Mol Biol Cell 13(3):782–794

    Article  CAS  PubMed  Google Scholar 

  • Sewell JL, Kahn RA (1988) Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc Natl Acad Sci USA 85(13):4620–4624

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Finkelstein A, Wolf AJ, Wade PA, Burton ZF, Jaehning JA (1996) Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription. Mol Cell Biol 16(2):669–676

    CAS  PubMed  Google Scholar 

  • Shi X, Chang M, Wolf AJ, Chang CH, Frazer-Abel AA, Wade PA, Burton ZF, Jaehning JA (1997) Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme. Mol Cell Biol 17(3):1160–1169

    CAS  PubMed  Google Scholar 

  • Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995

    Article  CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122(1):19–27

    CAS  PubMed  Google Scholar 

  • Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771(3):353–404

    CAS  PubMed  Google Scholar 

  • Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin DE, Hall MN (2008) TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell 7(10):1819–1830

    Article  CAS  PubMed  Google Scholar 

  • Takahashi MK, Frost C, Oyadomari K, Pinho M, Sao D, Chima-Okereke O, Gharakhanian E (2008) A novel immunodetection screen for vacuolar defects identifies a unique allele of VPS35 in S. cerevisiae. Mol Cell Biochem 311(1–2):121–136

    Article  CAS  PubMed  Google Scholar 

  • Thumm M (2000) Structure and function of the yeast vacuole and its role in autophagy. Microsc Res Tech 51(6):563–572

    Article  CAS  PubMed  Google Scholar 

  • Toikkanen J, Gatti E, Takei K, Saloheimo M, Olkkonen VM, Söderlund H, De Camilli P, Keranen S (1996) Yeast protein translocation complex: isolation of two genes SEB1 and SEB2 encoding proteins homologous to the Sec61 beta subunit. Yeast 12(5):425–438

    Article  CAS  PubMed  Google Scholar 

  • van Zyl W, Huang W, Sneddon AA, Stark M, Camier S, Werner M, Marck C, Sentenac A, Broach JR (1992) Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae. Mol Cell Biol 12(11):4946–4959

    PubMed  Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128(5):779–792

    Article  CAS  PubMed  Google Scholar 

  • Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10(13):1793–1808

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Ohsumi Y, Anraku Y (1992) Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants. J Biol Chem 267(26):18665–18670

    CAS  PubMed  Google Scholar 

  • Wagner MC, Molnar EE, Molitoris BA, Goebl MG (2006) Loss of the homotypic fusion and vacuole protein sorting or Golgi-associated retrograde protein vesicle tethering complexes results in gentamicin sensitivity in the yeast Saccharomyces cerevisiae. Antimicrob Agents Chemother 50(2):587–595

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Burke DJ (1997) Cdc55p, the B-type regulatory subunit of protein phosphatase 2A, has multiple functions in mitosis and is required for the kinetochore/spindle checkpoint in Saccharomyces cerevisiae. Mol Cell Biol 17(2):620–626

    CAS  PubMed  Google Scholar 

  • Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C (2008) Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol 69(1):277–285

    Article  CAS  PubMed  Google Scholar 

  • Weisman LS, Bacallao R, Wickner W (1987) Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105(4):1539–1547

    Article  CAS  PubMed  Google Scholar 

  • Wurmser AE, Emr SD (2002) Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J Cell Biol 158(4):761–772

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Greg Payne for the gift of the deletion strain library, parent vectors, and for continuous support and guidance. We thank Judy Brusslan for technical advice and helpful discussions, and the laboratories of J. Betz, J. Broach, S. Emr, and D. Wolf for generous gifts of plasmids. This work was supported by NIH grant #R15GM1085794-01 to EG. DEM and CRA-S were supported by NIH-RISE and NIH-MARC undergraduate training grants, respectively. DEM was partially supported by the cited NIH-R15 grant. DKO was supported by a Beckman Scholars award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Editte Gharakhanian.

Additional information

Communicated by S. Hohmann.

M. G. Banuelos and D. E. Moreno contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banuelos, M.G., Moreno, D.E., Olson, D.K. et al. Genomic analysis of severe hypersensitivity to hygromycin B reveals linkage to vacuolar defects and new vacuolar gene functions in Saccharomyces cerevisiae . Curr Genet 56, 121–137 (2010). https://doi.org/10.1007/s00294-009-0285-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-009-0285-3

Keywords

Navigation