Skip to main content
Log in

Mutations affecting spindle pole body and mitotic exit network function are synthetically lethal with a deletion of the nucleoporin NUP1 in S. cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Nuclear pore complexes (NPCs) are embedded in the nuclear envelope of eukaryotic cells and function to regulate passage of macromolecules in and out of the nucleus. Nup1 is one of 30 nucleoporins comprising the NPC of the yeast Saccharomyces cerevisiae and is located on the nucleoplasmic face of the NPC where it plays a role in mRNA export and protein transport. In order to further characterize the function of Nup1 we used a genetic approach to identify mutations that are synthetically lethal in combination with a deletion of NUP1 (nup1Δ). We have identified one such nup1 lethal mutant (nle6) as a temperature sensitive allele of nud1. NUD1 encodes a component of the yeast spindle pole body (SPB) and acts as scaffolding for the mitotic exit network (MEN). We observe that nle6/nud1 mutant cells have a normal distribution of NPCs within the nuclear envelope and exhibit normal rates of nuclear protein import at both the permissive and restrictive temperatures. nup1Δ also exhibits synthetic lethality with bub2Δ and bfa1Δ, both of which encode proteins that colocalize with Nud1 at spindle pole bodies and function in the mitotic exit network. However, we do not observe genetic interactions among nle6/nud1, bub2Δ, or bfa1Δ and mutations in the nucleoporin encoding genes NUP60 or NUP170, nor is nup1Δ synthetically lethal with the absence of components downstream in the mitotic exit network, including Lte1, Swi5, and Dbf2. Our results suggest a novel functional connection between Nup1 and proteins comprising both the spindle pole body and early mitotic exit network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams IR, Kilmartin JV (1999) Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol 145:809–823

    Article  PubMed  CAS  Google Scholar 

  • Alcazar-Roman AR, Tran EJ, Guo S, Wente SR (2006) Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 8(7):711–716

    Article  PubMed  CAS  Google Scholar 

  • Alexandar I, San Segundo P, Venkov P, del Rey F, Vazquez de Aldana CR (2004) Characterization of a Saccharomyces cerevisiae thermosensitive lytic mutant leads to the identification of a new allele of the NUD1 gene. Int J Biochem Cell Biol 36:2196–2213

    Article  PubMed  CAS  Google Scholar 

  • Asakawa K, Toh-e A (2002) A defect of Kap104 alleviates the requirement of mitotic exit network gene functions in Saccharomyces cerevisiae. Genetics 162(4):1545–1556

    PubMed  CAS  Google Scholar 

  • Baum P, Furlong C, Byers B (1986) Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci USA 83(15):5512–5516

    Article  PubMed  CAS  Google Scholar 

  • Belanger KD, Kenna MA, Wei S, Davis LI (1994) Genetic and physical interactions between Srp1p and nuclear pore complex proteins Nup1p and Nup2p. J Cell Biol 126:619–630

    Article  PubMed  CAS  Google Scholar 

  • Belanger KD, Simmons LA, Roth JK, VanderPloeg KA, Lichten LB, Fahrenkrog B (2004) The karyopherin Msn5/Kap142 requires Nup82 for nuclear export and performs a function distinct from translocation in RPA protein import. J Biol Chem 279:43530–43539

    Article  PubMed  CAS  Google Scholar 

  • Bembenek J, Kang J, Kurischko C, Li B, Raab JR, Belanger KD, Luca FC, Yu H (2005) Crm1-mediated nuclear export of Cdc14 is required for the completion of cytokinesis in budding yeast. Cell Cycle 4:961–971

    PubMed  CAS  Google Scholar 

  • Bogerd AM, Hoffman JA, Amberg DC, Fink GR, Davis LI (1994) nup1 Mutants exhibit pleiotropic defects in nuclear pore complex function. J Cell Biol 127:319–332

    Article  PubMed  CAS  Google Scholar 

  • Bosl WJ, Li R (2005) Mitotic exit control as an evolved complex system. Cell 121:325–333

    Article  PubMed  CAS  Google Scholar 

  • Bucci M, Wente SR (1998) A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly. Mol Biol Cell 9(9):2439–2461

    PubMed  CAS  Google Scholar 

  • Carmo-Fonseca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2(6):E107–12

    Google Scholar 

  • Chial HJ, Rout MP, Giddings TH, Winey M (1998) Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J Cell Biol 143:1789–1800

    Article  PubMed  CAS  Google Scholar 

  • Cid VJ, Jimenez J, Molina M, Sanchez M, Nombela C, Thorner JW (2002) Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology 148:2647–2659

    PubMed  CAS  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    Article  PubMed  CAS  Google Scholar 

  • Davis LI, Fink GR (1990) The NUP1 gene encodes an essential component of the yeast nuclear pore complex. Cell 61(6):965–978

    Article  PubMed  CAS  Google Scholar 

  • Elliott S, Knop M, Schlenstedt G, Schiebel E (1999) Spc29p is a component of the Spc110p subcomplex and is essential for spindle pole body duplication. Proc Natl Acad Sci USA 96:6205–6210

    Article  PubMed  CAS  Google Scholar 

  • Enenkel C, Blobel G, Rexach M (1995) Identification of a yeast karyopherin heterodimer that targets import substrate to mammalian nuclear pore complexes. J Biol Chem 270(28):16499–16502

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrog B, Koser J, Aebi U (2004) The nuclear pore complex: a jack of all trades? Trends Biochem Sci 29:175–182

    Article  PubMed  CAS  Google Scholar 

  • Fischer T, Strasser K, Racz A, Rodriguez-Navarro S, Oppizzi M, Ihrig P, Lechner J, Hurt E (2002) The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J 21:5843–5852

    Article  PubMed  CAS  Google Scholar 

  • Fischer T, Rodriguez-Navarro S, Pereira G, Racz A, Schiebel E, Hurt E (2004) Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat Cell Biol 6:840–848

    Article  PubMed  CAS  Google Scholar 

  • Geymonat M, Spanos A, Smith SJ, Wheatley E, Rittinger K, Johnston LH, Sedgwick SG (2002) Control of mitotic exit in budding yeast: in vitro regulation of Tem1 GTPase by Bub2 and Bfa1. J Biol Chem 277:28439–28445

    Article  PubMed  CAS  Google Scholar 

  • Grandi P, Emig S, Weise C, Hucho F, Pohl T, Hurt EC (1995) A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J Cell Biol 130(6):1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Gruneberg U, Campbell K, Simpson C, Grindlay J, Schiebel E (2000) Nud1p links astral microtubule organization and the control of exit from mitosis. EMBO J 19:6475–6488

    Article  PubMed  CAS  Google Scholar 

  • Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. San Diego, Academic Press

  • Harreman MT, Kline TM, Milford HG, Harben MB, Hodel AE, Corbett AH (2004) Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals. J Biol Chem 279(20):20613–20621

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz ME, Strambio-de-Castillia C, Blobel G (1998) Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex. Proc Natl Acad Sci USA 95(19):11241–11245

    Article  PubMed  CAS  Google Scholar 

  • Iouk T, Kerscher O, Scott RJ, Basrai MA, Wozniak RW (2002) The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J Cell Biol 159:807–819

    Article  PubMed  CAS  Google Scholar 

  • Jans DA, Hubner S (1996) Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev 76:651–685

    PubMed  CAS  Google Scholar 

  • Kaffman A, O’Shea EK (1999) Regulation of nuclear import: a key to a door. Annu Rev Cell Dev Biol 15:291–339

    Article  PubMed  CAS  Google Scholar 

  • Kaffman A, Rank NM, O’Shea EK (1998) Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1/Kap121. Genes Dev 12(17):2673–2683

    PubMed  CAS  Google Scholar 

  • Kenna MA, Petranka JG, Reilly JL, Davis LI (1996) Yeast N1e3p/Nup170p is required for normal stoichiometry of FG nucleoporins within the nuclear pore complex. Mol Cell Biol 16:2025–2036

    PubMed  CAS  Google Scholar 

  • Kerscher O, Hieter P, Winey M, Basrai MA (2001) Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics 157:1543–1553

    PubMed  CAS  Google Scholar 

  • Lau CK, Giddings TH Jr, Winey M (2004) A novel allele of Saccharomyces cerevisiae NDC1 reveals a potential role for the spindle pole body component Ndc1p in nuclear pore assembly. Eukaryot Cell 3:447–458

    Article  PubMed  CAS  Google Scholar 

  • Lee DCY, Aitchison JD (1999) Kap104p-mediated nuclear import: nuclear localization signals in mRNA-binding proteins and the role of Ran and RNA. J Biol Chem 274(41):29031–29037

    Article  PubMed  CAS  Google Scholar 

  • Li R (1999) Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc Natl Acad Sci USA 96:4989–4994

    Article  PubMed  CAS  Google Scholar 

  • Lim RY, Fahrenkrog B (2006) The nuclear pore complex up close. Curr Opin Cell Biol 18(3):342–347

    Article  PubMed  CAS  Google Scholar 

  • Madrid AS, Mancuso J, Cande WZ, Weis K (2006) The role of the integral membrane nucleoporins Ndc1p and Pom152p in nuclear pore complex assembly and function. J Cell Biol 173(3):361–371

    Article  PubMed  CAS  Google Scholar 

  • Makhnevych T, Lusk CP, Anderson AM, Aitchison JD, Wozniak RW (2003) Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115:813–823

    Article  PubMed  CAS  Google Scholar 

  • Murphy R, Wente SR (1996) An RNA-export mediator with an essential nuclear export signal. Nature 383(6598):357–360

    Article  PubMed  CAS  Google Scholar 

  • Niepel M, Strambio-de-Castillia C, Fasolo J, Chait BT, Rout MP (2005) The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J Cell Biol 170(2):225–235

    Article  PubMed  CAS  Google Scholar 

  • Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6(3):187–198

    Google Scholar 

  • Pereira G, Manson C, Grindlay J, Schiebel E (2002) Regulation of the Bfa1p-Bub2p complex at spindle pole bodies by the cell cycle phosphatase Cdc14p. J Cell Biol 157:367–379

    Article  PubMed  CAS  Google Scholar 

  • Pyhtila B, Rexach M (2003) A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J Biol Chem 278:42699–42709

    Article  PubMed  CAS  Google Scholar 

  • Queralt E, Igual JC (2003) Cell cycle activation of the Swi6p transcription factor is linked to nucleocytoplasmic shuttling. Mol Cell Biol 23(9):3126–3140

    Article  PubMed  CAS  Google Scholar 

  • Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83(5):683–692

    Article  PubMed  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651

    Article  PubMed  CAS  Google Scholar 

  • Schlaich NL, Hurt EC (1995) Analysis of nucleocytoplasmic transport and nuclear envelope structure in yeast disrupted for the gene encoding the nuclear pore protein Nup1p. Eur J Cell Biol 67(1):8–14

    PubMed  CAS  Google Scholar 

  • Schlenstedt G, Wong DH, Koepp DM, Silver PA (1995) Mutants in a yeast Ran binding protein are defective in nuclear transport. EMBO J 14(21):5367–5378

    PubMed  CAS  Google Scholar 

  • Shou W, Deshaies RJ (2002) Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae. BMC Genet 3:4

    Article  PubMed  Google Scholar 

  • Shulga N, Roberts P, Gu Z, Spitz L, Tabb MM, Nomura M, Goldfarb DS (1996) In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J Cell Biol 135(2):329–339

    Article  PubMed  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  • Siomi MC, Fromont M, Rain JC, Wan L, Wang F, Legrain P, Dreyfuss G (1998) Functional conservation of the transportin nuclear import pathway in divergent organisms. Mol Cell Biol 18(7):4141–4148

    PubMed  CAS  Google Scholar 

  • Spang A, Courtney I, Fackler U, Matzner M, Schiebel E (1993) The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J Cell Biol 123(2):405–416

    Article  PubMed  CAS  Google Scholar 

  • Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR (2004) Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 6:197–206

    Article  PubMed  CAS  Google Scholar 

  • Trautmann S, McCollum D (2005) Distinct nuclear and cytoplasmic functions of the S. pombe Cdc14-like phosphatase Clp1p/Flp1p and a role for nuclear shuttling in its regulation. Curr Biol 15(15):1384–1389

    Google Scholar 

  • Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2:709–718

    Article  PubMed  CAS  Google Scholar 

  • Visintin R, Hwang ES, Amon A (1999) Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398:818–823

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Hu F, Elledge SJ (2000) The Bfa1/Bub2 GAP complex comprises a universal checkpoint required to prevent mitotic exit. Curr Biol 10:1379–1382

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Jensen ON, Holmes S, Soues S, Mann M, Kilmartin JV (1998) Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J Cell Biol 141:967–977

    Article  PubMed  CAS  Google Scholar 

  • Woods RA, Gietz RD (2001) High-efficiency transformation of plasmid DNA into yeast. Methods Mol Biol 177:85–97

    PubMed  CAS  Google Scholar 

  • Yuste-Rojas M, Cross FR (2000) Mutations in CDC14 result in high sensitivity to cyclin gene dosage in Saccharomyces cerevisiae. Mol Gen Genet 263(1):60–72

    Article  PubMed  CAS  Google Scholar 

  • Zeitler B, Weis K (2004) The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo. J Cell Biol 167(4):583–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge S. Wente, J. Kilmartin, E. Schiebel, R. Li, N. Shulga, and D. Goldfarb for their generous sharing of yeast strains and plasmids. They also thank S. Geier, M. Gordon, and L. Parris for technical assistance and K. G. Belanger, M. Pettit, and K. Kokanovich for critical reading of this manuscript. Support for this work was provided by National Institutes of Health grant GM-65107 to K.D.B., Colgate summer undergraduate research fellowships to N.C.H. and N.T.A-G., and funding from the Howard Hughes Medical Institute in support of Colgate’s off-campus undergraduate research program at the NIH. M.B. was supported by funds from the Intramural Research Program of the NIH and NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Belanger.

Additional information

Communicated by K. Kuchler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, N.C., Al-Greene, N.T., Basrai, M.A. et al. Mutations affecting spindle pole body and mitotic exit network function are synthetically lethal with a deletion of the nucleoporin NUP1 in S. cerevisiae . Curr Genet 53, 95–105 (2008). https://doi.org/10.1007/s00294-007-0168-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0168-4

Keywords

Navigation