Skip to main content
Log in

Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric)

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The actin cytoskeleton (AC) of fungal hyphae is a major determinant of hyphal shape and morphogenesis, implicated in controlling tip structure and secretory vesicle delivery. Hyphal growth of the ectomycorrhizal fungus Amanita muscaria and symbiosis formation with spruce are promoted by the mycorrhiza helper bacterium Streptomyces sp. AcH 505 (AcH 505). To investigate structural requirements of growth promotion, the effect of AcH 505 on A. muscaria hyphal morphology, AC and actin gene expression were studied. Hyphal diameter and mycelial density decreased during dual culture (DC), and indirect immunofluorescence microscopy revealed that the dense and polarised actin cap in hyphal tips of axenic A. muscaria changes to a loosened and dispersed structure in DC. Supplementation of growth medium with cell-free bacterial supernatant confirmed that reduction in hyphal diameter and AC changes occurred at the same stage of growth. Transcript levels of both actin genes isolated from A. muscaria remained unaltered, indicating that AC changes are regulated by reorganisation of the existing actin pool. In conclusion, the AC reorganisation appears to result in altered hyphal morphology and faster apical extension. The thus improved spreading of hyphae and increased probability to encounter plant roots highlights a mechanism behind the mycorrhiza helper effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aktories K, Barbieri JT (2005) Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3:397–410

    Article  PubMed  CAS  Google Scholar 

  • Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript pattern associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus tinctorius. New Phytol 165:599–611

    Article  PubMed  CAS  Google Scholar 

  • Frankel S, Mooseker MS (1996) The actin-related proteins. Curr Opin Cell Biol 8:30–37

    Article  PubMed  CAS  Google Scholar 

  • Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza helper bacteria stimulated ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81–89

    Article  Google Scholar 

  • Garbaye J (1994) Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1989) Stimulation of mycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388

    Article  Google Scholar 

  • Gorfer M, Tarkka MT, Hanif M, Pardo AG, Laitainen E, Raudaskoski M (2001) Characterisation of small GTPases Cdc42 and Rac and the relationship between Cdc42 and actin cytoskeleton in vegetative and ectomycorrhizal hyphae of Suillus bovinus. Mol Plant Microbe Interact 14:135–144

    Article  PubMed  CAS  Google Scholar 

  • Hampp R, Maier A (2004) Interaction between soil bacteria and ectomycorrhiza-forming fungi. In: Varma A, Abbot LK, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 197–210

    Google Scholar 

  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M (2005) Polarisome meets spitzenkörper: microscopy, genetics and genome converge. Eukaryot Cell 4:225–229

    Article  PubMed  CAS  Google Scholar 

  • Heath IB (1990) The role of actin in tip growth of fungi. Int Rev Cytol 123:95–127

    CAS  Google Scholar 

  • Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  • Kottke I, Oberwinkler F (1987) The cellular structure of the Hartig net: coenocytic and transfer cell-like organisation. Nord J Bot 7:85–95

    Article  Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    CAS  Google Scholar 

  • Maier A (2003) Einfluss bakterieller Stoffwechselprodukte auf Wachstum und Proteom des Ektomykorrhizapilzes Amanita muscaria. Dissertation, University of Tuebingen

  • Maier A, Riedlinger J, Fiedler HP, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterisation and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Progress 3:129–136

    Article  Google Scholar 

  • Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler GH, Mazumder R, Nikolskaya AN, Panchenko AR, Rao BS, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH (2003) CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31:383–387

    Article  PubMed  CAS  Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenk NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul pp 115–129

    Google Scholar 

  • Nehls U, Wiese J, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant Microbe Interact 11:167–176

    Article  PubMed  CAS  Google Scholar 

  • Nehls U, Bock A, Ecke E, Hampp R (2001) Differential expression of the hexose-regulated fungal genes AmPAL and AmMst1 within Amanita/Populus ectomycorrhizas. New Phytol 150:583–589

    Article  CAS  Google Scholar 

  • Niini S, Raudaskoski M (1998) Growth patterns in non-mycorrhizal and mycorrhizal short roots of Pinus sylvestris. Symbiosis 25:101–114

    Google Scholar 

  • Poch O, Winsor B (1997) Who’s who among the Saccharomyces cerevisiae actin-related proteins? A classification and nomenclature proposal for a large family. Yeast 13:1053–1058

    Article  PubMed  CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris–Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Rambaut A, Drummond A (2003) Tracer, version 1.0. Department of Zoology, University of Oxford, Oxford. http://evolve.zoo.ox.ac.uk/software.html

  • Raudaskoski M, Rupeš I, Timonen S (1991) Immunofluorescence microscopy of the cytoskeleton in filamentous fungi after quick freezing and low temperature fixation. Exp Mycol 15:167–173

    Article  Google Scholar 

  • Raudaskoski M, Tarkka M, Niini S (2004) Mycorrhizal development and cytoskeleton. In: Varma A, Abbott LK, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 293–330

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  PubMed  CAS  Google Scholar 

  • Runeberg P, Raudaskoski M, Virtanen I (1985) Cytoskeletal elements in the hyphae of the homobasidiomycete Schizophyllum commune visualized by indirect immunofluorescence and NBC-phallacidin. Eur J Cell Biol 41:25–32

    Google Scholar 

  • Rupeš I, Mao WZ, Åström H, Raudaskoski M (1995) Effects of nocodazole and brefeldin A on microtubule cytoskeleton and membrane organization in the homobasidiomycete Schizophyllum commune. Protoplasma 185:212–221

    Article  Google Scholar 

  • Salo V, Ninii SS, Virtanen I, Raudaskoski M (1989) Comparative immunocytochemistry of the cytoskeleton in filamentous fungi with dikaryotic and multinucleate hyphae. J Cell Sci 94:11–24

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis TA (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sampson K, Heath IB (2005) The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology 151:1543–1555

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer C, Johann P, Nehls U, Hampp R (1996) Evidence for an up-regulation of the host and down-regulation of the fungal phosphofructokinase activity in ectomycorrhizas of Norway spruce and fly agaric. New Phytol 134:697–702

    Article  CAS  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  • Schuchardt I, Assmann D, Thines E, Schuberth C, Steinberg G (2005) Myosin-V, kinesin-1, and kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis. Mol Biol Cell 16:5191–5201

    Article  PubMed  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Tarkka MT, Vasara R, Gorfer M, Raudaskoski M (2000) Molecular characterisation of actin genes from homobasidiomycetes: two different actin genes from Schizophyllum commune and Suillus bovinus. Gene 251:27–35

    Article  PubMed  CAS  Google Scholar 

  • Tarkka MT, Schrey SD, Nehls U (2006) The a-tubulin gene AmTuba1: a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria. Curr Genet 49:294–301

    Article  PubMed  CAS  Google Scholar 

  • Tinsley JH, Lee IH, Minke PF, Plamann M (1998) Analysis of actin and actin-related protein 3 (ARP3) gene expression following induction of hyphal tip formation and apolar growth in Neurospora. Mol Gen Genet 259:601–609

    Article  PubMed  CAS  Google Scholar 

  • Torralba S, Raudaskoski M, Pedregosa AM, Laborda F (1998) Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144:45–53

    Article  PubMed  CAS  Google Scholar 

  • Virag A, Griffiths AJ (2004) A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet Biol 41:213–25

    Article  PubMed  CAS  Google Scholar 

  • Walther A, Wendland J (2004) Apical localisation of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p. J Cell Sci 117:4947–4958

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Salo V, Uuskallio M, Raudaskoski M (2005) Ectopic expression of a constitutively active Cdc42 small GTPase alters the morphology of haploid and dikaryotic hyphae in the filamentous homobasidiomycete Schizophyllum commune. Fungal Genet Biol 42:624–637

    Article  PubMed  CAS  Google Scholar 

  • Wright DP, Johansson T, Le Quere A, Söderström B, Tunlid A (2005) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. New Phytol 167:579–596

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Natalia Requena for helpful discussions. The study was supported by the Strukturfonds of the University of Tübingen (M.T.) and the German Research Foundation (D.F.G.; graduate school ‘Infection Biology’; S.D.S.) and by a grant of the Alfred-and-Maria-Teufel-Stiftung, Tuttlingen, Germany (S.D.S) and to MR from the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia D. Schrey.

Additional information

Communicated by U. Kües.

Electronic supplementary material

Below is the link to the electronic supplementary material.

294_2007_138_MOESM1_ESM.doc

294_2007_138_MOESM2_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrey, S.D., Salo, V., Raudaskoski, M. et al. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52, 77–85 (2007). https://doi.org/10.1007/s00294-007-0138-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0138-x

Keywords

Navigation