Skip to main content
Log in

Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae?

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A mild heat shock induces the synthesis of heat-shock proteins (hsps), which protect cells from damage during more extreme heat exposure. The nature of the signals that induce transcription of heat shock-regulated genes remains conjectural. In this work we studied the role of mitochondria in regulating hsps synthesis in Saccharomyces cerevisiae. The results obtained clearly indicate that a mild heat shock elicits a hyperpolarization of the inner mitochondrial membrane and such an event is one of several signals triggering the chain of reactions that activates the expression of the HSP104 gene and probably the expression of other heat shock-regulated genes in S. cerevisiae. The uncouplers or mitochondrial inhibitors which are capable of dissipating the potential on the inner mitochondrial membrane under particular experimental conditions prevent the synthesis of Hsp104 induced by mild heat shock and thus inhibit the development of induced thermotolerance. It is suggested that cAMP-dependent protein kinase A is participating in the mitochondrial regulation of nuclear genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516–528

    Article  CAS  PubMed  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    CAS  PubMed  Google Scholar 

  • Appleby RD, Porteous WK, Hughes G, James AM, Shannon D, Wei YH, Murphy MP (1999) Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. Eur J Biochem 262:108–116

    Google Scholar 

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in Drosophilia by heat shock. Cell 17:241–254

    Article  CAS  PubMed  Google Scholar 

  • Barrett MJ, Alones V, Wang KX, Phan L, Swerdlow RH (2004) Mitochondria-derived oxidative stress induces a heat shock protein response. J Neurosci Res 78:420–439

    Article  CAS  PubMed  Google Scholar 

  • Boutibonnes P, Bisson V, Thammavongs B, Hartke A, Panoff JM, Benachour A, Auffray Y (1995) Induction of thermotolerance by chemical agents in Lactococcus lactis subsp. lactis IL1403. Int J Food Microbiol 25:83–94

    Article  CAS  PubMed  Google Scholar 

  • Boy-Marcotte E, Lagniel G, Perrot M, Bussereau F, Boudsocq A, Jacquet M, Labarre J (1999) The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33:274–283

    Google Scholar 

  • Cameron S, Levin L, Zoller M, Wigler M (1988) cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53:555–566

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS, Schumacker PT (1999) Cells depleted of mitochondrial DNA (ρo) yield insight into physiological mechanisms. FEBS Lett 454:173–176

    Article  CAS  PubMed  Google Scholar 

  • Chen XJ, Clark-Walker GD (1999) α and β subunits of F1-ATPase are required for survival of petite mutants in Saccharomyces cerevisiae. Mol Gen Genet 262:898–908

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Piper PW (1994) Weak acid preservatives block the heat shock response and heat-shock-element-directed lacZ expression of low pH Saccharomyces cerevisiae cultures, an inhibitory action partially relieved by respiratory deficiency. Microbiology 140:1085–1096

    Google Scholar 

  • Currie S, Tufts BL, Moyes CD (1999) Influence of bioenergetic stress on heat shock protein gene expression in nucleated red blood cells of fish. Am J Physiol 276:R990–R996

    CAS  PubMed  Google Scholar 

  • Dupont CH, Mazat JP, Guerin B (1985) The role of adenine nucleotide translocation in the energization of the inner membrane of mitochondria isolated from ρ+ and ρ0 strains of Saccharomyces cerevisiae. Biochem Biophys Res Commun 132:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Elia G, De Marco A, Rossi A, Santoro MG (1996) Inhibition of HSP70 expression by calcium ionophore A23187 in human cells. An effect independent of the acquisition of DNA-binding activity by the heat shock transcription factor. J Biol Chem 271:16111–16118

    Google Scholar 

  • Fukunaga M, Mizuguchi Y, Yielding LW, Yielding KL (1984) Petite induction in Saccharomyces cerevisiae by ethidium analogs. Action on mitochondrial genome. Mutat Res 127:15–21

    CAS  PubMed  Google Scholar 

  • Gabai VL, Sherman MY (2002) Invited review: interplay between molecular chaperones and signaling pathways in survival of heat shock. J Appl Physiol 92:1743–1748

    CAS  PubMed  Google Scholar 

  • Garreau H, Hasan RN, Renault G, Estruch F, Boy-Marcotte E, Jacquet M (2000) Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146:2113–2120

    Google Scholar 

  • Gasch AP (2003) The environmental stress response: a common yeast response to diverse environmental. In: Hohmann S, Mager PWH (eds) Topics in current genetics: yeast stress responses, vol 1. Springer, Berlin Heidelberg New York, pp 11–70

  • Gasser SM, Daum G, Schatz G (1982) Import of proteins into mitochondria. Energy-dependent uptake of precursors by isolated mitochondria. J Biol Chem 257:13034–13041

    Google Scholar 

  • Giraud MF, Velours J (1997) The absence of the mitochondrial ATP synthase δ subunit promotes a slow growth phenotype of rho yeast cells by a lack of assembly of the catalytic sector F1. Eur J Biochem 245:813–818

    Google Scholar 

  • Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A (1999) Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445:98–102

    Article  CAS  PubMed  Google Scholar 

  • Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schuller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597

    PubMed  Google Scholar 

  • Grably MR, Stanhill A, Tell O, Engelberg D (2002) HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol 44:21–35

    Google Scholar 

  • Groot GS, Kovac L, Schatz G (1971) Promitochondria of anaerobically grown yeast. V. Energy transfer in the absence of an electron transfer chain. Proc Natl Acad Sci USA 68:308–311

    CAS  PubMed  Google Scholar 

  • Käppeli O (1986) Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 28:181–209

    PubMed  Google Scholar 

  • Kominsky DJ, Brownson MP, Updike DL, Thorsness PE (2002) Genetic and biochemical basis for viability of yeast lacking mitochondrial genomes. Genetics 162:1595–1604

    CAS  PubMed  Google Scholar 

  • Kovacova V, Irmlerova J, Kovac L (1968) Oxidative phosphorylatiion in yeast. IV. Combination of a nuclear mutation affecting oxidative phosphorylation with cytoplasmic mutation to respiratory deficiency. Biochim Biophys Acta 162:157–163

    CAS  PubMed  Google Scholar 

  • Kuzmin EV, Karpova OV, Elthon TE, Newton KJ (2004) Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins. J Biol Chem 279:20672–20677

    Google Scholar 

  • Lee K, Kang S, Lindquist S (1998) 13C NMR studies of metabolic pathways regulated by HSP104 in Saccharomyces cerevisiae. Bull Korean Chem Soc 19:295–299

    CAS  Google Scholar 

  • Lee S, Carlson T, Christian N, Lea K, Kedzie J, Reilly JP, Bonner JJ (2000) The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol Biol Cell 11:1753–1764

    CAS  PubMed  Google Scholar 

  • Lefebvre-Legendre L, Balguerie A, Duvezin-Caubet S, Giraud MF, Slonimski PP, Di Rago JP (2003) F1-catalysed ATP hydrolysis is required for mitochondrial biogenesis in Saccharomyces cerevisiae growing under conditions where it cannot respire. Mol Microbiol 47:1329–1339

    Article  CAS  PubMed  Google Scholar 

  • Li B, Liu HT, Sun DY, Zhou RG (2004) Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45:627–634

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Kim G (1996) Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci USA 93:5301–5306

    Article  CAS  PubMed  Google Scholar 

  • Loiseau D, Chevrollier A, Douay O, Vavasseur F, Renier G, Reynier P, Malthiery Y, Stepien G (2002) Oxygen consumption and expression of the adenine nucleotide translocator in cells lacking mitochondrial DNA. Exp Cell Res 278:12–18

    Article  CAS  PubMed  Google Scholar 

  • Ludovico P, Sansonetty F, Corte-Real M (2001) Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology 147:3335–3343

    Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    CAS  PubMed  Google Scholar 

  • Massie MR, Lapoczka EM, Boggs KD, Stine KE, White GE (2003) Exposure to the metabolic inhibitor sodium azide induces stress protein expression and thermotolerance in the nematode Caenorhabditis elegans. Cell Stress Chaperones 8:1–7

    Article  CAS  PubMed  Google Scholar 

  • Mitchel RE, Morrison DP (1983) Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae. Radiat Res 96:113–117

    CAS  PubMed  Google Scholar 

  • Moraitis C, Curran BP (2004) Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast 21:313–323

    Article  CAS  PubMed  Google Scholar 

  • Noshiro A, Purwin C, Laux M, Nicolay K, Scheffers WA, Holzer H (1987) Mechanism of stimulation of endogenous fermentation in yeast by carbonyl cyanide m-chlorophenylhydrazone. J Biol Chem 262:14154–14157

    Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Google Scholar 

  • Piper PW (1993) Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11:339–355

    Article  CAS  PubMed  Google Scholar 

  • Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168:257–269

    Article  CAS  PubMed  Google Scholar 

  • Rikhvanov EG, Varakina NN, Rusaleva TM, Rachenko EI, Voinikov VK (2002) Sodium azide reduces the thermotolerance of respiratively grown yeasts. Curr Microbiol 45:394–399

    Article  CAS  PubMed  Google Scholar 

  • Rikhvanov EG, Rachenko EI, Varakina NN, Rusaleva TM, Borovskii GB, Voinikov VK (2004) The induction of Saccharomyces cerevisiae Hsp104 synthesis by heat shock is controlled by mitochondria. Russ J Genet 40:341–347

    Article  CAS  Google Scholar 

  • Salvioli S, Dobrucki J, Moretti L, Troiano L, Fernandez MG, Pinti M, Pedrazzi J, Franceschi C, Cossarizza A (2000) Mitochondrial heterogeneity during staurosporine-induced apoptosis in HL60 cells: analysis at the single cell and single organelle level. Cytometry 40:189–197

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Y, Lindquist S (1990) HSP104 required for induced thermotolerance. Science 248:1112–1115

    CAS  PubMed  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11:2357–2364

    CAS  PubMed  Google Scholar 

  • Sanchez Y, Parsell DA, Taulien J, Vogel JL, Craig EA, Lindquist S (1993) Genetic evidence for a functional relationship between Hsp104 and Hsp70. J Bacteriol 175:6484–6491

    CAS  PubMed  Google Scholar 

  • Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Google Scholar 

  • Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

    CAS  PubMed  Google Scholar 

  • Smith A, Ward MP, Garrett S (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 17:3556–3564

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama K, Izawa S, Inoue Y (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275:15535–15540

    Google Scholar 

  • Thevelein JM, Winde JH de (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Google Scholar 

  • Thevelein JM, Beullens M, Honshoven F, Hoebeeck G, Detremerie K, Hollander JA den, Jans AW (1987) Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: intracellular pH and the effect of membrane depolarizing compounds. J Gen Microbiol 133:2191–2196

    Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36

    Article  CAS  PubMed  Google Scholar 

  • Trott A, Morano KA (2003) The yeast response to heat shock. In: Hohmann S, Mager PWH (eds) Topics in current genetics: yeast stress responses, vol 1. Springer, Berlin Heidelberg, New York, pp 71–119

  • Trotter EW, Kao CM, Berenfeld L, Botstein D, Petsko GA, Gray JV (2002) Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem 277:44817–44825

    Google Scholar 

  • Tzagoloff A, Myers AM (1986) Genetics of mitochondrial biogenesis. Annu Rev Biochem 55:249–285

    Article  CAS  PubMed  Google Scholar 

  • Varela JCS, Praekelt UM, Meacock PA, Planta RJ, Mager WH (1995) The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase. Mol Cell Biol 15:6232–6245

    CAS  PubMed  Google Scholar 

  • Webb JL (1963) Enzyme and metabolic inhibitor, vol 1. General principles of inhibition. Academic, New York, pp 782–784

    Google Scholar 

  • Weber J, Senior AE (1998) Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes. J Biol Chem 273:33210–33215

    Google Scholar 

  • Weitzel G, Pilatus U, Rensing L (1987) The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast. Exp Cell Res 170:64–79

    Article  CAS  PubMed  Google Scholar 

  • Wieser R, Adam G, Wagner A, Schuller C, Marchler G, Ruis H, Krawiec Z, Bilinski T (1991) Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem 266:12406–12411

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Russian Foundation of Basic Research (project 04-04-48275) and the Presidium of the RAS Program of Fundamental Research “Genome dynamics of plants, animals and human”. The authors are grateful to S. Lindquist (Whitehead Institute for Biomedical Research, USA), J. Thevelein (Instituut voor Plantkunde en Microbiologie, Belgium) and L. Sabova (Cancer Research Institute, Slovakia) for providing S. cerevisiae strains and antibodies. Authors are indebted to Ms. J. Sutton and Dr. A. Dietrich for checking the English language of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene G. Rikhvanov.

Additional information

Communicated by M. Brunner

Appendix

Appendix

Fig. 8
figure 8

The result of a typical experiment on the effect of DNP on induced thermotolerance in the parent-type strain W303-1B. Logarithmic yeast cultures grown at 26°C on YEPD (glucose) medium were incubated at 26°C or 39°C for 30 min in the presence or absence of DNP. Yeast suspension (1 ml) was transferred into test-tubes and exposed to 50°C for the indicated time-periods. After heat treatment, the yeast suspension was cooled, serially diluted in a metal plate with wells (ten-fold at each step) and spotted onto YEPD agar plates with a replicator. Plates were scanned after incubation at 30°C for 48 h. ae Cell survival after, respectively, 0, 2, 4, 6 and 8 min of heat shock at 50°C. f Replicator and metal plate with well. C26 Control, 26°C, D26 DNP, 26°C, C39 control, 39°C, D39 DNP, 39°C

Fig. 9
figure 9

Effect of sodium azide on induced thermotolerance in the parent-type strain 74-D694. Logarithmic yeast cultures grown at 26°C on YEPD (glucose) or YEPE (ethanol) medium were incubated at 26°C or 39°C for 30 min in the presence or absence of azide. Cell survival (initial density 105 cells/ml) after treatment at 50°C was determined by replicator assay. C26 Control, 26°C, A26 azide, 26°C, C39 control, 39°C, A39 azide, 39°C

Fig. 10
figure 10

Effect of sodium azide and DNP on heat-induced synthesis of Hsp104 in strain W303-1B. A logarithmic-phase yeast culture grown at 26°C on YEPD (glucose) was incubated at 26°C or 39°C for 30 min in the presence or absence of azide or DNP. Coomassie blue-stained SDS-PAGE gel and immunoblots were tested with anti-Hsp104 and anti-Hsp60 antibodies. C26 Control, 26°C, A26 azide, 26°C, D26 DNP, 26°C, C39 control, 39°C, A39 azide, 39°C, D39 DNP, 39°C (additional blots are non-specific staining)

Fig. 11
figure 11

Comparison of sodium azide effect on induced thermotolerance of the parent strain and hsp104 mutant S. cerevisiae. Yeasts grown at 26°C on YEPD medium were incubated at 39°C for 30 min in the presence or absence of azide and cell survival after treatment at 50°C was determined by replicator assay. C39 Control, 39°C, A39 azide, 39°C

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M. et al. Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae?. Curr Genet 48, 44–59 (2005). https://doi.org/10.1007/s00294-005-0587-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0587-z

Keywords

Navigation