Skip to main content
Log in

Evidence for the association of yeast mitochondrial ribosomes with Cox11p, a protein required for the CuB site formation of cytochrome c oxidase

Current Genetics Aims and scope Submit manuscript

Abstract

Cytochrome c oxidase is the terminal enzyme of the mitochondrial (mt) respiratory chain. It contains copper ions, which are organized in two centres, CuA and CuB. The CuA site of subunit Cox2p is exposed to the mt intermembrane space, while the CuB site of subunit Cox1p is buried in the inner mt membrane. Incorporation of copper into the two centres is crucial for the assembly and activity of the enzyme. Formation of the CuB site is dependent on Cox11p, a copper-binding protein of the mt inner membrane. Here, we experimentally prove that Cox11p possesses a Nin–Cout topology, with the C-terminal copper-binding domain exposed in the mt intermembrane space. Furthermore, we provide evidence for the association of Cox11p with the mt translation machinery. We propose a model in which the CuB site is co-translationally formed by a transient interaction between Cox11p and the nascent Cox1p in the intermembrane space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Gonnelli L, Mangani S (2004) Solution structure of Cox11: a novel type of β-immunoglobulin-like fold involved in CuB site formation of cytochrome c oxidase. J Biol Chem 279:34833–34839

    Google Scholar 

  • Barros MH, Carlson CG, Glerum DM, Tzagoloff A (2001) Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O. FEBS Lett 492:133–138

    Google Scholar 

  • Barros MH, Nobrega FG, Tzagoloff A (2002) Mitochondrial ferredoxin is required for heme A synthesis in Saccharomyces cerevisiae. J Biol Chem 277:9997–10002

    Google Scholar 

  • Beers J, Glerum DM, Tzagoloff A (1997) Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle. J Biol Chem 272:33191–33196

    Google Scholar 

  • Buchwald P, Krummek G, Rödel G (1991) Immunological identification of yeast SCO1 protein as a component of the inner mitochondrial membrane. Mol Gen Genet 229:413–420

    Google Scholar 

  • Bureik M, Schiffler B, Hiraoka Y, Vogel F, Bernhardt R (2002) Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein etp1. Biochemistry 7:2311–2321

    Google Scholar 

  • Carr HS, Winge DR (2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res 36:309–316

    Google Scholar 

  • Carr HS, George GN, Winge DR (2002) Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I) binding protein. J Biol Chem 277:31237–31242

    Google Scholar 

  • Daum G, Bohni PC, Schatz G (1982) Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257:13028–13033

    Google Scholar 

  • Fujiki Y, Hubbard AL, Fowler S, Lazarow PB (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmatic reticulum. J Cell Biol 93:97–102

    Article  CAS  PubMed  Google Scholar 

  • Gan X, Kitakawa M, Yoshino K, Oshiro N, Yonezawa K (2002) Tag-mediated isolation of yeast mitochondrial ribosome and mass spectrometric identification of its new components. Eur J Biochem 269:5203–5214

    Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  • Glerum DM, Shtanko A, Tzagoloff A (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504–14509

    Google Scholar 

  • Hiser L, Di Valentin M, Hamer AG, Hosler JP (2000) Cox11p is required for stable formation of the CuB and magnesium centers of cytochrome c oxidase. J Biol Chem 275:619–623

    Google Scholar 

  • Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Secific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279:35334–35340

    Google Scholar 

  • Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA (2003) Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J 22:6438–6447

    Google Scholar 

  • Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Krause-Buchholz U, Barth K, Dombrowski C, Rödel G (2004) Saccharomyces cerevisiae translational activator Cbs2p is associated with mitochondrial ribosomes. Curr Genet 46:20–28

    Google Scholar 

  • Krummeck G (1992) Das mitochondriale SCO1 protein von Saccharomyces cerevisiae: untersuchungen zur expression, topologie und funktion. PhD thesis, Ludwig-Maximilians-Universität München, Munich

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Leary S, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Eric A, Shoubridge EA (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Gen 13:1839–1848

    Google Scholar 

  • Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244

    Article  CAS  PubMed  Google Scholar 

  • Lode A, Kuschel M, Paret C, Rödel G (2000) Mitochondrial copper metabolism in yeast: interaction between Sco1p and Cox2p. FEBS Lett 485:19–24

    Article  Google Scholar 

  • Lode A, Paret C, Rödel G (2002) Molecular characterization of Saccharomyces cerevisiae Sco2p reveals high degree of redundancy with Sco1p. Yeast 19:909–922

    Google Scholar 

  • Maxfield AB, Heaton DN, Winge DR (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem 279:5072–5080

    Google Scholar 

  • McMullin TW, Haffter P, Fox TD (1990) A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol Cell Biol 10:4590–4595

    Google Scholar 

  • Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  Google Scholar 

  • Nittis T, George GN, Winge DR (2001) Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J Biol Chem 276:42520–42526

    Google Scholar 

  • Petruzella V, Tiranti V, Fernandez P, Ianna P, Carozzo R, Zeviani M (1998) Identification and characterization of human cDNAs specific to BCS1, PET122, SCO1, COX15 and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 54:494–504

    Google Scholar 

  • Poqulis RJ, Vallejo AN, Pease LR (1996) In vitro recombination and mutagenesis by overlap extension PCR. Methods Mol Biol 57:167–176

    Google Scholar 

  • Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607

    Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Google Scholar 

  • Pungartnik C, Kern MF, Brendel M, Henriques JAP (1999) Mutant allele pso7-1, that sensitizes Saccharomyces cerevisiae to photoactivated psoralen is allelic with COX11, encoding a protein indispensable for functional cytochrome c oxidase. Curr Genet 36:124–129

    Google Scholar 

  • Sali A (1999) Functional links between proteins. Nature 402:23–26

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sanger F, Nicklen, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Saveanu C, Fromont-Racine M, Harington A, Richard F, Namane A, Jacquier A (2001) Identification of 12 new yeast mitochondrial ribosomal proteins including 6 that have no prokaryotic homologues. J Biol Chem 276:15861–15867

    Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acid as a carrier. Curr Genet 16:339–346

    Article  Google Scholar 

  • Stuart RA (2002) Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. Biochim Biophys Acta 1592:79–87

    Google Scholar 

  • Stuart RA, Neupert W (1996) Topogenesis of inner membrane proteins of mitochondria. Trends Biochem Sci 21:261–267

    Google Scholar 

  • Szyrach G, Ott M, Bonnefoy N, Neupert W, Herrmann J (2003) Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J 22:6448–6457

    Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzava-Itoh K, Hakashima R, Yaono R, Yoshikava S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–1074

    CAS  PubMed  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å . Science 272:1136–1144

    CAS  PubMed  Google Scholar 

  • Tzagoloff A, Capitano N, Nobrega MP, Gatti D (1990) Cytochrome oxidase assembly in yeast requires the product of COX11, a homolog of the P. denitrificans protein encoded by ORF3. EMBO J 9:2759–2764

    Google Scholar 

  • Williams EH, Perez-Martinez X, Fox TD (2004) MrpL36p, a highly diverged L31 ribosomal protein homolog with additional functional domains in Saccharomyces cerevisiae mitochondria. Genetics 167:65–75

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Lill (Marburg) T.D. Fox (Ithaca, N.Y.), C. Walch-Solimena (Dresden) and J.M. Herrmann (München) for antibodies, M. Pielenz for plasmid pJR1-31XL ScSCO1 and U. Krause-Buchholz for helpful comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Khalimonchuk.

Additional information

Communicated by M. Brunner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalimonchuk, O., Ostermann, K. & Rödel, G. Evidence for the association of yeast mitochondrial ribosomes with Cox11p, a protein required for the CuB site formation of cytochrome c oxidase. Curr Genet 47, 223–233 (2005). https://doi.org/10.1007/s00294-005-0569-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0569-1

Keywords

Navigation