Skip to main content
Log in

Intragenic suppressors that restore the activity of the maturase encoded by the second intron of the Saccharomyces cerevisiae cyt b gene

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The protein encoded by the second intron (bi2) of the mitochondrial cyt b gene from Saccharomyces cerevisiae functions as a maturase promoting intron splicing. This protein belongs to a large family characterized by the presence of two conserved motifs: LAGLIDADG (or P1 and P2). We have isolated and characterized spontaneous revertants from two mis-sense mutations, G85D and H92P (localized in the P1 motif of the bi2-maturase), that have a detrimental effect on intron splicing. All analyzed revertants are intragenic and resulted from monosubstitutions in the mutated codons. Only true back-mutations that restore the initial glycine 85 and a pseudoreversion that replaces the deleterious aspartic acid 85 by alanine were found in revertants of the mutant G85D. In contrast, all possible monosubstitutions in the mutated codon H92P were identified among the revertants of this mutant. The maturase activity of all novel forms of the protein is similar to the wild-type protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anziano PQ, Hanson DK, Mahler HR, Perlman PS (1982) Functional domains in introns: trans-acting and cis-acting regions of intron 4 of the cob gene. Cell 30:925–932

    Article  CAS  PubMed  Google Scholar 

  • Banroques J, Delahodde A, Jacq C (1986) A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell 46:837–844

    Article  CAS  PubMed  Google Scholar 

  • Bassi GS, Oliveira DM de, White MF, Weeks KM (2002) Recruitment of intron-encoded and co-opted proteins in splicing of the bi3 group I intron RNA. Proc Natl Acad Sci USA 99:128–133

    Article  CAS  PubMed  Google Scholar 

  • Belfort M, Roberts RJ (1997) Homing endonucleases: keeping the house in order. Nucleic Acids Res 25:3379–3388

    Article  CAS  PubMed  Google Scholar 

  • Bolduc JM, Spiegel PC, Chatterjee P, Brady KL, Downing ME, Caprara MG, Waring RB, Stoddard BL (2003) Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev 17:2875–2888

    Article  CAS  PubMed  Google Scholar 

  • Bonitz SG, Berlani R, Corruzi G, Li M, Macino G, Nobrega F, Nobrega M, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77:3167–3170

    CAS  PubMed  Google Scholar 

  • Dalgaard JZ, Klar AJ, Moser MJ, Holley WR, Chatterjee A, Mian IS (1997) Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25:4626–4638

    Article  CAS  PubMed  Google Scholar 

  • De la Salle H, Jacq C, Slonimski PP (1982) Critical sequences within mitochondrial introns: pleiotropic mRNA maturase and cis-dominant signals of box intron controlling reduction and oxidase. Cell 28:721–732

    Article  PubMed  Google Scholar 

  • Dujardin G, Jacq C, Slonimski PP (1982) Single base substitution in an intron of oxidase gene compensated splicing defect in the cytochrome b gene. Nature 298:628–632

    CAS  PubMed  Google Scholar 

  • Gargouri A (1989) Recherches sur les introns de l’ADN mitochondrial chez la levure Saccharomyces cerevisiae: mutations, suppressions et deletions genomiques d’intron. PhD thesis, l’Universite Pierre et Marie Curie, Paris

  • Gargouri A, Lazowska J, Slonimski PP (1983) DNA-splicing of introns in the gene: a general way of reverting intron mutations. In: Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria: nucleo-mitochondrial interactions. de Gruyter, Berlin, pp 259–268

  • Geese WJ, Kwon YK, Wen X, Waring RB (2003) In vitro analysis of the relationship between endonuclease and maturase activities in the bi-functional group I intron-encoded protein, I-AniI. Eur J Biochem 270:1543–1554

    CAS  PubMed  Google Scholar 

  • Henke RM, Butow RA, Perlman PS (1995) Maturase and endonuclease functions depend on separate conserved domains of the bifunctional protein encoded by the group I intron ai4a of yeast mitochondrial DNA. EMBO J 14:5094–5099

    CAS  PubMed  Google Scholar 

  • Ho Y, Kim SJ, Waring RB (1997) A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease. Proc Natl Acad Sci USA 94:8994–8999

    Google Scholar 

  • Ho Y, Waring RB (1999) The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing. J Mol Biol 292:987–1001

    Article  CAS  PubMed  Google Scholar 

  • Jamoussi K, Lazowska J (2000) Intragenic suppressors that restore the splicing and homing activities of the protein encoded by the second intron of the Saccharomyces capensis cyt b gene. Curr Genet 38:276–282

    Article  CAS  PubMed  Google Scholar 

  • Jurica MS, Stoddard BL (1999) Homing endonucleases: structure, function and evolution. Cell Mol Life Sci 55:1304–1326

    Article  CAS  PubMed  Google Scholar 

  • Kreike J, Schulze M, Ahne F, Lang F (1987) A yeast nuclear gene, MRS1, involved in mitochondrial RNA splicing: nucleotide sequence and mutational analysis of two overlapping open reading frames on opposite strands. EMBO J 6:2123–2129

    CAS  PubMed  Google Scholar 

  • Kruszewska A, Slonimski PP (1984) Mitochondrial and nuclear mitoribosomal suppressors that enable misreading of ochre codons in yeast mitochondria. I. Isolation, localization and allelism of suppressors. Curr Genet 9:1–10

    Google Scholar 

  • Labouesse M, Herbert CJ, Dujardin G, Slonimski PP (1987) Three mutations which cure a mitochondrial RNA maturase deficiency occur at the same codon in the open reading frame of the nuclear NAM2 gene. EMBO J 6:713–721

    CAS  PubMed  Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622

    CAS  PubMed  Google Scholar 

  • Lazowska J, Jacq C, Slonimski PP (1980) Sequence of introns and flanking exons in wild-type and box3 mutants reveals an interlaced splicing protein coded by an intron. Cell 22:333–348

    CAS  PubMed  Google Scholar 

  • Lazowska J, Szczepanek T, Macadre C, Dokowa M (1992) Two homologous mitochondrial introns from closely related Saccharomyces species differ by only a few amino acid replacements in their open reading frame: One is mobile, the other is not. C R Acad Sci Ser D 315:37–41

    CAS  Google Scholar 

  • Li M, Tzagoloff A (1979) Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell 18:47–53

    Article  CAS  PubMed  Google Scholar 

  • Monteilhet C, Dziadkowiec D, Szczepanek T, Lazowska J (2000) Purification and characterization of the DNA cleavage and recognition site of I-ScaI mitochondrial group I intron encoded endonuclease produced in Escherichia coli. Nucleic Acids Res 28:1245–1251

    Article  CAS  PubMed  Google Scholar 

  • Pellenz S, Harington A, Dujon B, Wolf K, Schäfer B (2002) Characterization of the I-SpomI endonuclease from fission yeast: insights into evolution of a group I intron-encoded homing endonuclease. J Mol Evol 55:302–313

    Article  CAS  PubMed  Google Scholar 

  • di Rago JP, Netter P, Slonimski PP (1990) Pseudo-wild type revertants from inactive apocytochrome b mutants as a tool for the analysis of the structure/function relationships of the mitochondrial ubiquinol–cytochrome c reductase of Saccharomyces cerevisiae. J Biol Chem 265:3332–3339

    PubMed  Google Scholar 

  • Rho SB, Martinis SA (2000) The group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity. RNA 6:1882–1894

    Article  CAS  PubMed  Google Scholar 

  • Schäfer B, Wolf K (1997) The mobile introns in fission yeast mitochondria—a short review and new data. In: Schenk HEA, Herrmann RG, Jeon KW, Müller NE, Schwemmler W (eds) Eukaryotism and symbiosis: intertaxonic combination versus symbiotic adaptation. Springer, Berlin Heidelberg New York, pp 139–144

  • Schäfer B, Wilde B, Massardo DR, Manna F, Del Giudice L, Wolf K (1994) A mitochondrial group I intron in fission yeast encodes a maturase and is mobile. Curr Genet 25:336–341

    Google Scholar 

  • Solem A, Chatterjee P, Caprara MG (2002) A novel mechanism for protein-assisted group I intron splicing. RNA 8:412–425

    Article  CAS  PubMed  Google Scholar 

  • Szczepanek T, Lazowska J (1996) Replacement of two non-adjacent amino acids in the S. cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity. EMBO J 15:3758–3767

    CAS  PubMed  Google Scholar 

  • Szczepanek T, Jamoussi K, Lazowska J (2000) Critical base substitutions that affect the splicing and/or homing activities of the group I intron bi2 of yeast mitochondria. Mol Gen Genet 264:137–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christopher J. Herbert for critical reading of the manuscript and correcting the English and thank D. Menay for the synthesis of oligonucleotides. E.M. was the recipient of a doctoral fellowship from the CNRS within the framework of the Centre Franco–Polonais de Biotechnologie des Plantes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaga Lazowska.

Additional information

Communicated by M. Brunner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciaszczyk, E., Ulaszewski, S. & Lazowska, J. Intragenic suppressors that restore the activity of the maturase encoded by the second intron of the Saccharomyces cerevisiae cyt b gene. Curr Genet 46, 67–71 (2004). https://doi.org/10.1007/s00294-004-0509-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0509-5

Keywords

Navigation