Skip to main content
Log in

Genomweite Expressionsprofile als klinische Entscheidungshilfe

Bereit für die Praxis?

Genome-wide expression profiling as a clinical tool

Are we there yet?

  • Schwerpunkt: Mammapathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Das Mammakarzinom ist eine heterogene Erkrankung mit einer Fülle von histologischen Typen und stark variierendem klinischen Verlauf. Die histopathologischen Klassifikationssysteme basieren auf deskriptiven Entitäten und besitzen prognostische Signifikanz. Es gibt nur wenige Prognosefaktoren, die nicht auf der histologischen Untersuchung basieren. Bislang ist nur eine sehr kleine Zahl prädiktiver Biomarker in die klinische Praxis eingeführt. Unter den modernen molekularen Techniken erlangte die Genexpressionsanalyse auf Microarray-Basis die größte Aufmerksamkeit. Diese Methode wurde mit Erfolg benutzt, um eine neue molekulare Taxonomie für das Mammakarzinom aufzustellen, die interessante Einsichten in die Biologie dieser Erkrankung erlaubt. Durch Microarray-basierte Studien sind zahlreiche prognostische bzw. prädiktive Signaturen erarbeitet worden, die eine Verbesserung bei der Entscheidungsfindung zur Brustkrebstherapie versprechen. Die diskriminierende Power der meisten bisher entwickelten Signaturen scheint auf Östrogenrezeptor-positive Karzinome beschränkt. Diese Übersicht versucht zu klären, welchen Beitrag Genexpressionsprofile derzeit zu unserem Verständnis des Mammakarzinoms und zum klinischen Management leistet. Darüber hinaus soll aufgezeigt werden, was zu tun bleibt, um verschiedene prädiktive Klassifikationsmöglichkeiten in die klinische Praxis zu überführen.

Abstract

Breast cancer is a heterogeneous disease, encompassing a plethora of histological types and clinical courses. Current histopathological classification systems for breast cancer are based on descriptive entities that are of prognostic significance. Few prognostic markers beyond those offered by histopathological analysis are available. Furthermore, a very limited armamentarium of predictive biomarkers has been introduced in clinical practice. High throughput molecular technologies are reshaping our understanding of breast cancer, of which microarray-based gene expression has received the most attention. This method has been successfully used to derive a molecular taxonomy for breast cancer, which has provided interesting insights into the biology of the disease. Microarray-based class prediction studies have generated a multitude of prognostic/predictive signatures. Although these signatures have not been fully translated to clinical practice as yet, they herald the promise of an improvement in breast cancer treatment decision-making. It should be noted, however, that most of the signatures developed to date seem to have discriminatory power almost restricted to oestrogen receptor-positive disease. This review addresses the contribution of gene expression profiling to our understanding of breast cancer and its clinical management and what has yet to be done for these classifiers to be incorporated in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Abd El-Rehim DM et al (2004) Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 203:661–671

    Article  Google Scholar 

  2. Andre F et al (2006) DNA arrays as predictors of efficacy of adjuvant/neoadjuvant chemotherapy in breast cancer patients: current data and issues on study design. Biochim Biophys Acta 1766:197–204

    PubMed  CAS  Google Scholar 

  3. Andre F, Pusztai L (2006) Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol 3:621–632

    Article  PubMed  Google Scholar 

  4. Beck AH et al (2008) The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88:591–601

    Article  PubMed  CAS  Google Scholar 

  5. Bergamaschi A et al (2008) Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol 214:357–367

    Article  PubMed  CAS  Google Scholar 

  6. Brenton JD et al (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23:7350–7360

    Article  PubMed  CAS  Google Scholar 

  7. Bueno-de-Mesquita JM et al (2007) Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 8:1079–1087

    Article  PubMed  CAS  Google Scholar 

  8. Buerger H et al (2001) Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J Pathol 194:165–170

    Article  PubMed  CAS  Google Scholar 

  9. Buerger H et al (1999) Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 189:521–526

    Article  PubMed  CAS  Google Scholar 

  10. Buyse M et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192

    PubMed  CAS  Google Scholar 

  11. Cardoso F et al (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26:729–735

    Article  PubMed  Google Scholar 

  12. Chang HY et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 102:3738–3743

    Article  PubMed  CAS  Google Scholar 

  13. Chang HY et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7

    Article  PubMed  CAS  Google Scholar 

  14. Cheang MC et al (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376

    Article  PubMed  CAS  Google Scholar 

  15. Desmedt C et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165

    Article  PubMed  CAS  Google Scholar 

  16. Desmedt C, Sotiriou C (2006) Proliferation: the most prominent predictor of clinical outcome in breast cancer. Cell Cycle 5:2198–2202

    PubMed  CAS  Google Scholar 

  17. Dunkler D, Michiels S, Schemper M (2007) Gene expression profiling: does it add predictive accuracy to clinical characteristics in cancer prognosis? Eur J Cancer 43:745–751

    Article  PubMed  CAS  Google Scholar 

  18. Eden P et al (2004) „Good Old“ clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 40:1837–1841

    Article  PubMed  CAS  Google Scholar 

  19. Eifel P et al (2001) National institutes of health consensus development conference statement: adjuvant therapy for breast cancer, November 1-3, 2000. J Natl Cancer Inst 93:979–989

    Article  PubMed  CAS  Google Scholar 

  20. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 103:5923–5928

    Article  PubMed  CAS  Google Scholar 

  21. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  PubMed  CAS  Google Scholar 

  22. Farmer P et al (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671

    Article  PubMed  CAS  Google Scholar 

  23. Finak G et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    Article  PubMed  CAS  Google Scholar 

  24. Fulford LG et al (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49:22–34

    Article  PubMed  CAS  Google Scholar 

  25. Galea MH et al (1992) The nottingham prognostic index in primary breast cancer. Breast Cancer Res Treat 22:207–219

    Article  PubMed  CAS  Google Scholar 

  26. Geyer CE et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    Article  PubMed  CAS  Google Scholar 

  27. Gilbert JA et al (2008) Molecular analysis of metaplastic breast carcinoma: high EGFR copy number via aneusomy. Mol Cancer Ther 7:944–951

    Article  PubMed  CAS  Google Scholar 

  28. Goldhirsch A et al (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer. Ann Oncol 18:1133–1144

    Article  PubMed  CAS  Google Scholar 

  29. Gusterson BA et al (2005) Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 7:143–148

    Article  PubMed  CAS  Google Scholar 

  30. Harris L et al (2007) American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    Article  PubMed  CAS  Google Scholar 

  31. He YD, Friend SH (2001) Microarrays–the 21st century divining rod? Nat Med 7:658–659

    Article  PubMed  CAS  Google Scholar 

  32. Herschkowitz JI et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76

    Article  PubMed  CAS  Google Scholar 

  33. Hess KR et al (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin and cyclophosphamide in breast cancer. J Clin Oncol 24:4236–4244

    Article  PubMed  CAS  Google Scholar 

  34. Hu Z et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    Article  PubMed  CAS  Google Scholar 

  35. Ioannidis JP (2005) Microarrays and molecular research: noise discovery? Lancet 365:454–455

    PubMed  Google Scholar 

  36. Ivshina AV et al (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66:10292–10301

    Article  PubMed  CAS  Google Scholar 

  37. Joensuu H et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354:809–820

    Article  PubMed  CAS  Google Scholar 

  38. Liu J et al (2008) Identification of a gene signature in cell cycle pathway for breast cancer prognosis using gene expression profiling data. BMC Med Genomics 1:39

    Article  PubMed  CAS  Google Scholar 

  39. Liu R et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226

    Article  PubMed  CAS  Google Scholar 

  40. Livasy CA et al (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271

    Article  PubMed  CAS  Google Scholar 

  41. Loi S et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25:1239–1246

    Article  PubMed  CAS  Google Scholar 

  42. Loi S et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25:1239–1246

    Article  PubMed  CAS  Google Scholar 

  43. Loi S et al (2008) Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9:239

    Article  PubMed  CAS  Google Scholar 

  44. Lu X et al (2008) Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 108:191–201

    Article  PubMed  CAS  Google Scholar 

  45. Ma XJ et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14:2601–2608

    Article  PubMed  CAS  Google Scholar 

  46. Ma XJ et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A 100:5974–5979

    Article  PubMed  CAS  Google Scholar 

  47. Ma XJ et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616

    Article  PubMed  CAS  Google Scholar 

  48. Marchio C et al (2008) Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 215:398–410

    Article  PubMed  CAS  Google Scholar 

  49. Michiels S, Koscielny S, Hill C (2007) Interpretation of microarray data in cancer. Br J Cancer 96:1155–1158

    Article  PubMed  CAS  Google Scholar 

  50. Mook S et al (2008) The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat [Epub ahead of print]

  51. Mullins M et al (2007) Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and formalin-fixed, paraffin-embedded tissues. Clin Chem 53:1273–1279

    Article  PubMed  CAS  Google Scholar 

  52. Nahta R, Esteva FJ (2007) Trastuzumab: triumphs and tribulations. Oncogene 26:3637–3643

    Article  PubMed  CAS  Google Scholar 

  53. Nielsen TO et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  PubMed  CAS  Google Scholar 

  54. Paik S (2007) Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncologist 12:631–635

    Article  PubMed  CAS  Google Scholar 

  55. Paik S (2007) Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncologist 12:631–635

    Article  PubMed  CAS  Google Scholar 

  56. Paik S et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  PubMed  CAS  Google Scholar 

  57. Parker J et al (2008) A supervised risk predictor of breast cancer based on biological subtypes. J Clin Oncol (Meeting Abstracts) 26:11008

    Google Scholar 

  58. Parry S et al (2008) Nestin is expressed in basal-like and triple negative breast cancers. J Clin Pathol 61:1045–1050

    Article  PubMed  CAS  Google Scholar 

  59. Penland SK et al (2007) RNA expression analysis of formalin-fixed paraffin-embedded tumors. Lab Invest 87:383–391

    PubMed  CAS  Google Scholar 

  60. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  61. Perreard L et al (2006) Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 8:R23

    Article  PubMed  CAS  Google Scholar 

  62. Piccart-Gebhart MJ et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  PubMed  CAS  Google Scholar 

  63. Rakha EA et al (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208:495–506

    Article  PubMed  CAS  Google Scholar 

  64. Ravo M et al (2008) Quantitative expression profiling of highly degraded RNA from formalin-fixed, paraffin-embedded breast tumor biopsies by oligonucleotide microarrays. Lab Invest 88:430–440

    Article  PubMed  CAS  Google Scholar 

  65. Reis-Filho JS et al (2006) Metaplastic breast carcinomas are basal-like tumours. Histopathology 49:10–21

    Article  PubMed  CAS  Google Scholar 

  66. Reis-Filho JS et al (2005) The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract 201:713–725

    Article  PubMed  Google Scholar 

  67. Reis-Filho JS, Westbury C, Pierga JY (2006) The impact of expression profiling on prognostic and predictive testing in breast cancer. J Clin Pathol 59:225–231

    Article  PubMed  CAS  Google Scholar 

  68. Ring BZ et al (2006) Novel prognostic immunohistochemical biomarker panel for estrogen receptor-positive breast cancer. J Clin Oncol 24:3039–3047

    Article  PubMed  CAS  Google Scholar 

  69. Robbins P et al (1995) Histological grading of breast carcinomas: a study of interobserver agreement. Hum Pathol 26:873–879

    Article  PubMed  CAS  Google Scholar 

  70. Romond EH et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  PubMed  CAS  Google Scholar 

  71. Roylance R et al (1999) Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res 59:1433–1436

    PubMed  CAS  Google Scholar 

  72. Savage K et al (2007) Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical and in situ hybridization analysis. Clin Cancer Res 13:90–101

    Article  PubMed  CAS  Google Scholar 

  73. Savage K et al (2008) Distribution and significance of caveolin 2 expression in normal breast and invasive breast cancer: an immunofluorescence and immunohistochemical analysis. Breast Cancer Res Treat 110:245–256

    Article  PubMed  CAS  Google Scholar 

  74. Shi L et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  PubMed  CAS  Google Scholar 

  75. Simon R (2005) Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 23:7332–7341

    Article  PubMed  CAS  Google Scholar 

  76. Simpson PT et al (2005) Molecular evolution of breast cancer. J Pathol 205:248–254

    Article  PubMed  CAS  Google Scholar 

  77. Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  PubMed  CAS  Google Scholar 

  78. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  79. Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  80. Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care?. Nat Rev Cancer 7:545–553

    Article  PubMed  CAS  Google Scholar 

  81. Sotiriou C et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    Article  PubMed  CAS  Google Scholar 

  82. Teschendorff AE, Caldas C (2008) A robust classifier of high predictive value to identify good prognosis patients in ER-negative breast cancer. Breast Cancer Res 10:R73

    Article  PubMed  CAS  Google Scholar 

  83. Teschendorff AE et al (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8:R157

    Article  PubMed  CAS  Google Scholar 

  84. Tordai A et al (2008) Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res 10:R37

    Article  PubMed  CAS  Google Scholar 

  85. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25:5846–5853

    Article  PubMed  CAS  Google Scholar 

  86. van ‚t Veer LJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  87. van de Rijn M et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    Google Scholar 

  88. van de Vijver MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  Google Scholar 

  89. Wang Y (2005) Gene expression-driven diagnostics and pharmacogenomics in cancer. Curr Opin Mol Ther 7:246–250

    PubMed  CAS  Google Scholar 

  90. Weigelt B et al (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 216:141–150

    Article  PubMed  CAS  Google Scholar 

  91. West RB et al (2005) Determination of stromal signatures in breast carcinoma. PLoS Biol 3:e187

    Article  PubMed  CAS  Google Scholar 

  92. Wirapati P et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Wir danken Britta Weigelt für das kritische Lesen des Manuskripts. Jorge S. Reis-Filho und Felipe C. Geyer wurden vom Breakthrough Breast Cancer Research Centre unterstützt.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.S. Reis-Filho MD PhD FRCPath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geyer, F., Decker, T. & Reis-Filho, J. Genomweite Expressionsprofile als klinische Entscheidungshilfe. Pathologe 30, 141–146 (2009). https://doi.org/10.1007/s00292-008-1104-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-008-1104-1

Schlüsselwörter

Keywords

Navigation