Skip to main content
Log in

Structure–function relationships in conjugated materials containing tunable thieno[3,4-b]pyrazine units

  • Original Article
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of 2,3-difunctionalized 5,7-bis(2-thienyl)thieno[3,4-b]pyrazines containing electron-donating and electron-withdrawing side chains are reported to evaluate the potential tuning effect of the side chains on the electronic properties of these common terthienyl building blocks. In order to further study the resulting effects of such side chains in polymeric materials, the dihexyloxy-functionalized terthienyl was copolymerized with fluorene and its electronic properties compared with a number of analogous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–205

    Article  CAS  Google Scholar 

  2. Rasmussen SC, Pomerantz M (2007) Low band gap conducting polymers, chapter 12. In: Skotheim TA, Reynolds JR (eds) Handbook of conducting polymers, vol 1, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  3. Rasmussen SC, Ogawa K, Rothstein SD (2008) Synthetic approaches to band gap control in conjugated polymeric materials, chapter 1. In: Nalwa HS (ed) Handbook of organic electronics and photonics, vol 1. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  4. Rasmussen SC, Schwiderski RL, Mulholland ME (2011) Thieno[3,4-b]pyrazines and their applications to low band gap organic materials. Chem Commun 47:11394–11410

    Article  CAS  Google Scholar 

  5. Wudl F, Kobayashi M, Heeger AJ (1984) Poly(isothianaphthene). J Org Chem 49:3382–3384

    Article  CAS  Google Scholar 

  6. Kobayashi M, Colaneri N, Boysel M, Wudl F, Heeger AJ (1985) The electronic and electrochemical properties of poly(isothianaphthene). J Chem Phys 82:5717–5723

    Article  CAS  Google Scholar 

  7. Kenning DD, Mitchell KA, Calhoun TR, Funfar MR, Sattler DJ, Rasmussen SC (2002) Thieno[3,4-b]pyrazines: synthesis, structure, and reactivity. J Org Chem 67:9073–9076

    Article  CAS  Google Scholar 

  8. Rasmussen SC, Sattler DJ, Mitchell KA, Maxwell J (2004) Photophysical characterization of 2,3-difunctionalized thieno[3,4-b]pyrazines. J Lumin 190:111–119

    Article  Google Scholar 

  9. Wen L, Nietfeld JP, Amb CM, Rasmussen SC (2008) Synthesis and characterization of new 2,3-disubstituted thieno[3,4-b]pyrazines: tunable building blocks for low band gap conjugated materials. J Org Chem 73:8529–8536

    Article  CAS  Google Scholar 

  10. Rasmussen SC, Mulholland ME, Schwiderski RL, Larsen CA (2011) Thieno[3,4-b]pyrazines and its extended analogues: important buildings blocks for conjugated materials. J Heterocycl Chem 48. doi:10.1002/jhet.1051

  11. Wen L, Nietfeld JP, Amb CM, Rasmussen SC (2009) New tunable thieno[3,4-b]pyrazine-based materials. Synth Met 159:2299–2301

    Article  CAS  Google Scholar 

  12. Perzon E, Wang X, Zhang F, Mammo W, Delgado JL, de la Cruz P, Inganas O, Langa F, Andersson MR (2005) Design, synthesis and properties of low band gap polyfluorenes for photovoltaic devices. Synth Met 154:53–56

    Article  CAS  Google Scholar 

  13. Zhang F, Perzon E, Wang X, Mammo W, Andersson MR, Inganas O (2005) Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm. Adv Funct Mater 15:745–750

    Article  CAS  Google Scholar 

  14. Admassie S, Inganas O, Mammo W, Perzon E, Andersson MR (2006) Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. Synth Met 156:614–623

    Article  CAS  Google Scholar 

  15. Zhu Y, Champion RD, Jenekhe SA (2006) Conjugated donor-acceptor copolymer semiconductors with large intramolecular charge transfer: synthesis, optical properties, electrochemistry, and field effect carrier mobility of thienopyrazine-based copolymers. Macromolecules 39:8712–8719

    Article  CAS  Google Scholar 

  16. Lee W, Cheng K, Wang T, Chueh C, Chen W, Tuan C, Lin J (2007) Effects of acceptors on the electronic and optoelectronic properties of fluorene-based donor–acceptor–donor copolymers. Macromol Chem Phys 208:1919–1927

    Article  CAS  Google Scholar 

  17. Helgesen M, Krebs FC (2010) Photovoltaic performance of polymers based on dithienylthienopyrazines bearing thermocleavable benzoate esters. Macromolecules 43:1253–1260

    Article  CAS  Google Scholar 

  18. Zhou E, Cong J, Yamakawa S, Wei Q, Nakamura M, Tajima K, Yang C, Hashimoto K (2010) Synthesis of thieno[3,4-b]pyrazine-based and 2,1,3-benzothiadiazole-based donor-acceptor copolymers and their application in photovoltaic devices. Macromolecules 43:2873–2879

    Article  CAS  Google Scholar 

  19. Chao C-Y, Lim H, Chao C-H (2010) Molecular engineering of conjugated copolymers for photoactive layer in polymer solar cells. Polym Prepr 51(1):715–716

    CAS  Google Scholar 

  20. Kitamura C, Tanaka S, Yamashita Y (1994) Synthesis of new narrow bandgap polymers based on 5,7-di(2-thienyl)thieno[3,4-b]pyrazine and its derivatives. J Chem Soc Chem Commun 1585–1586

  21. Kitamura C, Tanaka S, Yamashita Y (1996) Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chem Mater 8:570–578

    Article  CAS  Google Scholar 

  22. Cho SY, Grimsdale AC, Jones DJ, Watkins SE, Holmes AB (2007) Polyfluorenes without monoalkylfluorene defects. J Am Chem Soc 129:11910–11911

    Article  CAS  Google Scholar 

  23. Larson RC, Iwamoto RT, Adams RN (1961) Reference electrodes for voltammetry in acetonitrile. Anal Chim Acta 25:371–374

    CAS  Google Scholar 

  24. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC (2011) Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv Mater 23:2367–2371

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science Foundation (DMR-0907043) and North Dakota State University for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth C. Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulholland, M.E., Schwiderski, R.L. & Rasmussen, S.C. Structure–function relationships in conjugated materials containing tunable thieno[3,4-b]pyrazine units. Polym. Bull. 69, 291–301 (2012). https://doi.org/10.1007/s00289-012-0718-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0718-x

Keywords

Navigation