Skip to main content
Log in

Mechanical properties of functionalized SEBS based inorganic hybrid materials

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Functional triblock copolymer [polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene] or SEBS elastomer was used to synthesize flexible organic-inorganic hybrid materials. Modification of elastomer was first achieved via nitration to produce nitrofunctionalized copolymer and its subsequent reduction forming aminofunctionalized copolymer. IR, 1H NMR and 13C NMR spectroscopic analyses provided an evidence of their modified structures. Modified SEBS based hybrid materials were then prepared through solution intercalation technique using layered silicates and in-situ polymerization of metal alkoxides via sol-gel process. In the first attempt, hybrids were prepared by the reinforcement of aminofunctionalized SEBS with organophilic montmorillonite to establish compatibility between organic matrix and inorganic phase. Reinforcement of the modified copolymer was secondly achieved by hydrolytic condensation of tetraethoxysilane using 3-glycidyloxypropyl trimethoxysilane (as a coupling agent) yielding hybrid materials. The chemical interactions between the organic polymer chains and the inorganic networks produced in-situ led to better properties of modified elastomer. Mechanical properties of thin transparent films of these hybrids were measured. Tensile strength of hybrids shows a considerable improvement over pure SEBS as well as aminofunctionalized copolymer in all the systems, which shows an increased interfacial interaction between organic and inorganic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojimi Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigato O (1993) J. Polym. Sci, 31(4): 983–986.

    Google Scholar 

  2. Park CI, Park OO, Lim JG, Kim HJ (2001) Polymer, 42(17): 7465-7475.

  3. Vaia RA, Jant KS, Kramer EJ, Gianellis EP (1995) Macromolecules, 28(24): 8080–8085.

  4. Manias E, Touny A, Strawhecker K, Lu B, Wu L, Gilman JW, Chung TC (2002) Polym. Mater. Sci. Eng, 82: 282.

    Google Scholar 

  5. Lee DC, Jang LW (1996) J. Appl. Polym. Sci, 61(7): 1117–1122.

    Google Scholar 

  6. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias JE, Giannellis EP, Wuthenow M, Hilton D, Phillips SH (2000) Chem. Mater, 12(7): 1866–1873.

    Google Scholar 

  7. Lan T, Pinnavaia TJ (1994) Chem. Mater, 6(12): 2216–2219.

  8. Gianellis EP (1996) Adv. Mater, 8: 661.

  9. Liu YC, Tyan HL, Wei KH (1999) Chem. Mater, 11(7): 1942–1947.

  10. Brinker CJ, Scherer GW (1985) J. Non-Cryst. Solids, 70(3): 301–322.

  11. Mackenzie JG (1982) J. Non-Cryst. Solids, 48(1): 1–10.

    Google Scholar 

  12. Mark JE (1992) J. Appl. Polym. Sci: Appl. Polym. Symp, 50: 273.

  13. Philipp G, Schmidt H (1984) J. Non-Cryst. Solids, 63 (1–2): 283–292.

  14. Hench LL, West JK (1990) Chem. Rev, 90(1): 33–72.

  15. Mark JE (1991) J. Inorg. Orgmet. Polym, 1(4): 431–448.

    Google Scholar 

  16. Schmidt H (1985) J. Non-Cryst. Solids, 73 (1–3): 681–691.

    Google Scholar 

  17. Mark JE, Wang S, Ahmad Z (1995) Macromol. Symp, 98: 731–751.

    Google Scholar 

  18. Nova BM (1993) Adv. Mater, 5: 422.

  19. Huang ZH , Qiu KY (1995) Polym. Bull, 35(5): 607–613.

  20. Landry CJT, Coltrain BK, Wesson JA, Zumbulyadis N, Lippert JL (1992) Polymer, 33(7): 1496–1506.

  21. Huang ZH, Qiu KY (1997) Polymer, 38(3): 521–526.

  22. Wang S, Mark JE, Ahmad Z (1994) J. Macromol. Sci. Mol. Repr, A 31: 411–419.

    Google Scholar 

  23. Wang S, Mark JE , Ahmad Z (1994) Chem. Mater, 6(7): 943–946.

  24. Ahmad Z, Sarwar MI , Mark JE (1997) J. Mater. Chem, 7: 259–263.

    Google Scholar 

  25. Ahmad Z, Sarwar MI, Mark JE (1998) J. Appl. Polym. Sci, 70: 297–302.

    Google Scholar 

  26. Ahmad Z, Sarwar MI, Mark JE (1997) J. Appl. Polym. Sci, 63: 1345–1352.

    Google Scholar 

  27. Ahmad Z, Sarwar MI, Mark JE (1997) Polymer, 38: 4523–4529.

  28. Tjong SC, Xu SA, Mai YW (2003) J. Appl. Polym. Sci, 88(5): 1384–1392.

    Google Scholar 

  29. Tjong SC, Xu SA, Mai YW (2002) J. Appl. Polym. Sci. Part B Polym. Phys, 40(17): 1881–1892.

    Google Scholar 

  30. Laura DM, Keskkula H, Barlow JW, Paul DR (2001) Polymer, 42(14): 6161–6172.

  31. Tjong SC, Xu SA, Li RKY, Mai YW (2002) Compos. Sci. Techol, 62(6): 831–840.

  32. Chiou KC, Chang FC, Mai YW (2001) Polym. Eng. Sci, 41(6): 1007–1018.

    Google Scholar 

  33. Tjong SC, Xu SA, Li RKY, Mai YW (2003) J. Appl. Polym. Sci, 87(3): 441–451.

  34. Zulfiqar S, Ahmad Z, Ishaq M, Saeed S, Sarwar MI (2007) J. Mater. Sci, 42(1): 93–100.

    Google Scholar 

  35. Betrabet CS, Wilkes GL(1995) Chem. Mater, 7(3): 535–545.

    Google Scholar 

  36. Glaser RH, Wilkes GL (1988) Polym. Bull, 19(1): 51–57.

  37. Huang ZH, Dong JH, Qiu KY, Wei Y (1997) J. Appl. Polym. Sci, 66(5): 853–860.

    Google Scholar 

  38. Sarwar MI, Ahmad Z (2000) Eur. Polym. J, 36: 89–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ilyas Sarwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kausar, A., Zulfiqar, S., Shabbir, S. et al. Mechanical properties of functionalized SEBS based inorganic hybrid materials. Polym. Bull. 59, 457–468 (2007). https://doi.org/10.1007/s00289-007-0786-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-007-0786-5

Keywords

Navigation