Skip to main content

Advertisement

Log in

The epidemic threshold of vector-borne diseases with seasonality

The case of cutaneous leishmaniasis in Chichaoua, Morocco

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cutaneous leishmaniasis is a vector-borne disease transmitted to humans by sandflies. In this paper, we develop a mathematical model which takes into account the seasonality of the vector population and the distribution of the latent period from infection to symptoms in humans. Parameters are fitted to real data from the province of Chichaoua, Morocco. We also introduce a generalization of the definition of the basic reproduction number R 0 which is adapted to periodic environments. This R 0 is estimated numerically for the epidemic in Chichaoua; \(R_0\simeq\) 1.94. The model suggests that the epidemic could be stopped if the vector population were reduced by a factor \((R_0)^2\simeq\) 3.76.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson R.M., May R.M. (1991) Infectious Diseases of Humans – Dynamics and Control. Oxford University Press, Oxford

    Google Scholar 

  2. Anita S., Iannelli M., Kim M.Y., Park E.J. (1998) Optimal harvesting for periodic age-dependent population dynamics. SIAM J. Appl. Math. 58, 1648–1666

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben Salah A., Smaoui H., Mbarki L., Anderson R.M., Ben Ismaïl R. (1994) Développement d’un modèle mathématique de la dynamique de transmission de la leishmaniose canine. Archs. Inst. Pasteur Tunis 71, 431–438

    Google Scholar 

  4. Burattini M.N., Coutinho F.A.B., Lopez L.F., Massad E. (1998) Modelling the dynamics of leishmaniasis considering human, animal host and vector populations. J. Biol. Syst. 6, 337–356

    Article  Google Scholar 

  5. Chaves L.F., Hernandez M.J. (2004) Mathematical modelling of American Cutaneous Leishmaniasis: incidental hosts and threshold conditions for infection persistence. Acta Tropica 92, 245–252

    Article  Google Scholar 

  6. Coale A.J. (1972) The Growth and Structure of Human Populations – a Mathematical Investigation. Princeton University Press, Princeton

    Google Scholar 

  7. Desjeux P. (2004) Leishmaniasis: current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis. 27, 305–318

    Article  Google Scholar 

  8. Diekmann O., Heesterbeek J.A.P. (2000) Mathematical Epidemiology of Infectious Diseases – Model Building, Analysis and Interpretation. Wiley, Chichester

    Google Scholar 

  9. Feliciangeli M.D. (2004) Natural breeding places of phlebotomine sandflies. Med. Vet. Entomol. 18, 71–80

    Article  Google Scholar 

  10. Guernaoui S., Boumezzough A., Pesson B., Pichon G. (2005) Entomological investigations in Chichaoua: an emerging epidemic focus of cutaneous leishmaniasis in Morocco. J. Med. Entomol. 42, 697–701

    Article  Google Scholar 

  11. Hasibeder G., Dye C., Carpenter J. (1992) Mathematical modelling and theory for estimating the basic reproduction number of canine leishmaniasis. Parasitology 105, 43–53

    Article  Google Scholar 

  12. Heesterbeek J.A.P., Roberts M.G. (1995) Threshold quantities for helminth infections. J. Math. Biol. 33, 415–434

    Article  MATH  MathSciNet  Google Scholar 

  13. Heesterbeek J.A.P., Roberts M.G. (1995) Threshold quantities for infectious diseases in periodic environments. J. Biol. Syst. 3, 779–787

    Article  Google Scholar 

  14. Jagers P., Nerman O. (1985) Branching processes in periodically varying environment. Ann. Prob. 13, 254–268

    Article  MATH  MathSciNet  Google Scholar 

  15. Kerr S.F., Grant W.E., Dronen N.O Jr. (1997) A simulation model of the infection cycle of Leishmania mexicana in Neotoma micropus. Ecol. Modell. 98, 187–197

    Article  Google Scholar 

  16. Lotka A.J. (1923) Contribution to the analysis of malaria epidemiology. Am. J. Hygiene 3, 1–121

    Google Scholar 

  17. Kermack W.O., McKendrick A.G. (1927) A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond A 115, 700–721

    Article  Google Scholar 

  18. Ma J., Ma Z. (2006) Epidemic threshold conditions for seasonally forced SEIR models. Math. Biosci. Eng. 3, 161–172

    MATH  MathSciNet  Google Scholar 

  19. Ministère de la Santé Publique du Maroc Etat d’avancement des programmes de lutte contre les maladies parasitaires. Direction de l’épidémiologie et de lutte contre les maladies, Rabat (2001)

  20. Rabinovich J.E., Feliciangeli M.D. (2004) Parameters of Leishmania Braziliensis transmission by indoor Lutzomyia Ovallesi in Venezuela. Am. J. Trop. Med. Hygiene. 70, 373–382

    Google Scholar 

  21. Ross R. (1911) The Prevention of Malaria. John Murray, London

    Google Scholar 

  22. Thieme H.R. (1984) Renewal theorems for linear periodic Volterra integral equations. J. Integral Equations 7, 253–277

    MATH  MathSciNet  Google Scholar 

  23. Williams B.G., Dye C. (1997) Infectious disease persistence when transmission varies seasonally. Math. Biosci. 145, 77–88

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bacaër.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacaër, N., Guernaoui, S. The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436 (2006). https://doi.org/10.1007/s00285-006-0015-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0015-0

Keywords

Mathematics Subject Classification (2000)

Navigation