Skip to main content

Advertisement

Log in

Functional Analysis of the EspR Binding Sites Upstream of espR in Mycobacterium tuberculosis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The ESX-1 secretion system exports substrate proteins into host cells and is crucial for the pathogenesis of Mycobacterium tuberculosis. EspR is one of the characterized transcriptional regulators that modulates the ESX-1 system by binding the conserved EspR binding sites in the promoter of espA, the encoding gene of EspA, which is also a substrate protein of the ESX-1 system and is required for the ESX-1 activity. EspR is autoregulatory and conserved EspR binding sites are present upstream of espR. In this study, we showed that these EspR sites had varying affinities for EspR, with site B being the strongest one. Point mutations of the DNA sequence at site B abolished binding of EspR to oligonucleotides containing site B alone or with other sites, further suggesting that site B is a major binding site for EspR. Complementation studies showed that constructs containing espR, and the upstream intergenic region fully restored espR expression in a ΔespR mutant strain. Although recombinant strains with mutations at more than one EspR site showed minimal differences in espR expression, reduced expression of other EspR target genes was observed, suggesting that slight changes in EspR levels can have downstream regulatory effects. These findings contribute to our understanding of the regulation of the ESX-1 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Behr MA, Sherman DR (2007) Mycobacterial virulence and specialized secretion: same story, different ending. Nat Med 13:286–287

    Article  PubMed  CAS  Google Scholar 

  2. Berthet FX, Rasmussen PB, Rosenkrands I, Andersen P, Gicquel B (1998) A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144(Pt 11):3195–3203

    Article  PubMed  CAS  Google Scholar 

  3. Blasco B, Chen JM, Hartkoorn R, Sala C, Uplekar S, Rougemont J, Pojer F, Cole ST (2012) Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoid-associated protein. PLoS Pathog 8:e1002621

    Article  PubMed  Google Scholar 

  4. Blasco B, Stenta M, Alonso-Sarduy L, Dietler G, Peraro MD, Cole ST, Pojer F (2011) Atypical DNA recognition mechanism used by the EspR virulence regulator of Mycobacterium tuberculosis. Mol Microbiol 82:251–264

    Article  PubMed  CAS  Google Scholar 

  5. Buxton RS, Green J, Hunt DM, Kahramanoglou C, Stapleton MR, Sweeney NP (2012) Long range transcriptional control of virulence critical genes in Mycobacterium tuberculosis by nucleoid-associated proteins? Virulence 3:408–410

    Article  PubMed  Google Scholar 

  6. Chen JM, Boy-Rottger S, Dhar N, Sweeney N, Buxton RS, Pojer F, Rosenkrands I, Cole ST (2012) EspD is critical for the virulence-mediating ESX-1 secretion system in Mycobacterium tuberculosis. J Bacteriol 194:884–893

    Article  PubMed  CAS  Google Scholar 

  7. Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, Bloom BR, Rubin EJ (2005) Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci USA 102:10676–10681

    Article  PubMed  CAS  Google Scholar 

  8. Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Garnier T, Gicquel B, Martin C, Leclerc C, Cole ST, Brosch R (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4:e33

    Article  PubMed  Google Scholar 

  9. Gao LY, Guo S, McLaughlin B, Morisaki H, Engel JN, Brown EJ (2004) A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol 53:1677–1693

    Article  PubMed  CAS  Google Scholar 

  10. Garces A, Atmakuri K, Chase MR, Woodworth JS, Krastins B, Rothchild AC, Ramsdell TL, Lopez MF, Behar SM, Sarracino DA, Fortune SM (2010) EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog 6:e1000957

    Article  PubMed  Google Scholar 

  11. Gordon BR, Li Y, Wang L, Sintsova A, van Bakel H, Tian S, Navarre WW, Xia B, Liu J (2010) Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107:5154–5159

    Article  PubMed  CAS  Google Scholar 

  12. He H, Hovey R, Kane J, Singh V, Zahrt TC (2006) MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J Bacteriol 188:2134–2143

    Article  PubMed  CAS  Google Scholar 

  13. Hunt DM, Sweeney NP, Mori L, Whalan RH, Comas I, Norman L, Cortes T, Arnvig KB, Davis EO, Stapleton MR, Green J, Buxton RS (2012) Long-range transcriptional control of an operon necessary for virulence-critical ESX-1 secretion in Mycobacterium tuberculosis. J Bacteriol 194:2307–2320

    Article  PubMed  CAS  Google Scholar 

  14. MacGurn JA, Raghavan S, Stanley SA, Cox JS (2005) A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol Microbiol 57:1653–1663

    Article  PubMed  CAS  Google Scholar 

  15. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282

    PubMed  CAS  Google Scholar 

  16. Pang X, Samten B, Cao G, Wang X, Tvinnereim AR, Chen XL, Howard ST (2013) MprAB Regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. J Bacteriol 195:66–75

    Article  PubMed  CAS  Google Scholar 

  17. Pang X, Vu P, Byrd TF, Ghanny S, Soteropoulos P, Mukamolova GV, Wu S, Samten B, Howard ST (2007) Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis. Microbiology 153:1229–1242

    Article  PubMed  CAS  Google Scholar 

  18. Porcelli SA (2008) Tuberculosis: shrewd survival strategy. Nature 454:702–703

    Article  PubMed  CAS  Google Scholar 

  19. Raghavan S, Manzanillo P, Chan K, Dovey C, Cox JS (2008) Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454:717–721

    Article  PubMed  CAS  Google Scholar 

  20. Rickman L, Scott C, Hunt DM, Hutchinson T, Menendez MC, Whalan R, Hinds J, Colston MJ, Green J, Buxton RS (2005) A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol Microbiol 56:1274–1286

    Article  PubMed  CAS  Google Scholar 

  21. Rosenberg OS, Dovey C, Tempesta M, Robbins RA, Finer-Moore JS, Stroud RM, Cox JS (2011) EspR, a key regulator of Mycobacterium tuberculosis virulence, adopts a unique dimeric structure among helix-turn-helix proteins. Proc Natl Acad Sci USA 108:13450–13455

    Article  PubMed  CAS  Google Scholar 

  22. Ryndak M, Wang S, Smith I (2008) PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 16:528–534

    Article  PubMed  CAS  Google Scholar 

  23. Simeone R, Bottai D, Brosch R (2009) ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 12:4–10

    Article  PubMed  CAS  Google Scholar 

  24. Sorensen AL, Nagai S, Houen G, Andersen P, Andersen AB (1995) Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 63:1710–1717

    PubMed  CAS  Google Scholar 

  25. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF et al (1991) New use of BCG for recombinant vaccines. Nature 351:456–460

    Article  PubMed  CAS  Google Scholar 

  26. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312–330

    Article  PubMed  CAS  Google Scholar 

  27. Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, Edwards N, Zhu X, Fenselau C, Gao LY (2007) A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 66:787–800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jeffery Cox for the Erdman strain and espR mutant. The authors also thank Sarah Fortune for proving the antibodies to EspA, and BEI Resources for antibodies to Mpt32 and GroEL2. This study was supported by the Natural Science Foundation of China (NFSC81071328 and NFSC81171540 to X.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua Pang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 77 kb)

Supplementary material 2 (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, G., Howard, S.T., Zhang, P. et al. Functional Analysis of the EspR Binding Sites Upstream of espR in Mycobacterium tuberculosis . Curr Microbiol 67, 572–579 (2013). https://doi.org/10.1007/s00284-013-0404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0404-8

Keywords

Navigation