Skip to main content

Advertisement

Log in

Production and Evaluation of an Antimicrobial Peptide-Containing Wafer Formulation for Topical Application

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A targeted approach for direct topical antimicrobial delivery involving the formulation of impregnated freeze-dried wafers prepared from a natural polymer has been assessed to consider potential for treatment of wounded skin. The synthetic cationic antimicrobial peptides (CAPs) NP101 and NP108 were found to have modest in vitro activity against bacterial species commonly associated with wound infections. Minimum inhibitory concentration/minimum bactericidal concentrations against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were found to be 0.31 mg/ml for NP101 and 0.25–0.5 mg/ml for NP108. Rapid, substantial cytoplasmic potassium loss was induced by NP108 in E. coli, but not the other species. Through scanning electron microscopy, both CAPs were observed to alter cell morphology, prevent normal septation, promote cell aggregation and trigger release or formation of extracellular filaments. Wafers harbouring these agents displayed substantial antibacterial activity when assessed by standard diffusion assay. These data confirm that topical delivery of CAPs, through their incorporation within freeze-dried wafer formulations prepared from natural polymers, represents a potential viable approach for treating skin infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aucken H, Ganner M, Murchan S, Cookson B, Johnson A (2002) A new UK strain of epidemic methicillin-resistant Staphylococcus aureus (EMRSA-17) resistant to multiple antibiotics. J Antimicrob Chemother 50:171–175. doi:10.1093/jac/dkf117

    Article  PubMed  CAS  Google Scholar 

  2. Bhat S, Milner S (2007) Antimicrobial peptides in burns and wounds. Curr Protein Pept Sci 8:506–520

    Article  PubMed  CAS  Google Scholar 

  3. Boateng JS, Matthews KH, Auffret AD, Humphrey MJ, Stevens HN, Eccleston GM (2009) In vitro drug release studies of polymeric freeze-dried wafers and solvent-cast films using paracetamol as a model soluble drug. Int J Pharm 378:66–72. doi:10.1016/j.ijpharm.2009.05.038

    Article  PubMed  CAS  Google Scholar 

  4. Boateng JS, Auffret AD, Matthews KH, Humphrey MJ, Stevens HNE, Eccleston GM (2010) Characterisation of freeze-dried wafers and solvent evaporated films as potential drug delivery systems to mucosal surfaces. Int J Pharm 389:24–31. doi:10.1016/j.ijpharm.2010.01.008

    Article  PubMed  CAS  Google Scholar 

  5. Chua K, Laurent F, Coombs G, Grayson ML, Howden BP (2011) Not community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)! A clinician’s guide to community MRSA—its evolving antimicrobial resistance and implications for therapy. Clin Infect Dis 52:99–114. doi:10.1093/cid/ciq067

    Article  PubMed  Google Scholar 

  6. Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32:858–875. doi:10.1016/j.progpolymsci.2007.05.010

    Article  CAS  Google Scholar 

  7. Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ (2008) Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 58:185–206

    Article  PubMed  Google Scholar 

  8. Hale JDF, Hancock REW (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 10:951–959. doi:10.1586/14787210.5.6.961

    Article  Google Scholar 

  9. Hancock RE, Sahl HG (2006) Antimicrobial and host-defence peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. doi:10.1038/nbt1267

    Article  PubMed  CAS  Google Scholar 

  10. Lambert PA, Hammond SM (1973) Potassium fluxes, first indications of membrane damage in micro-organisms. Biochem Biophys Res Commun 54:796–799. doi:10.1016/0006-291X(73)91494-0

    Article  PubMed  CAS  Google Scholar 

  11. Lu H, Tonge PJ (2010) Drug–target residence time: critical information for lead optimization. Curr Opin Chem Biol 14:467–474. doi:10.1016/j.cbpa.2010.06.176

    Article  PubMed  CAS  Google Scholar 

  12. Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmodtchen A (2011) Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS ONE 6:e16400. doi:10.1371/journal.pone.0016400

    Article  PubMed  CAS  Google Scholar 

  13. Martin N, Dodds C (2006) Protective mechanisms of the body. Anaesth Intensive Care Med 7:459–461. doi:10.1053/j.mpaic.2006.09.008

    Article  Google Scholar 

  14. Matthews KH, Stevens HNE, Auffret AD, Humphrey MJ, Eccleston GM (2005) Lyophilised wafers as a drug delivery system for wound healing containing methylcellulose as a viscosity modifier. Int J Pharm 289:51–62. doi:10.1016/j.ijpharm.2004.10.022

    Article  PubMed  CAS  Google Scholar 

  15. Matthews KH, Stevens HNE, Auffret AD, Humphrey MJ, Eccleston GM (2008) Formulation, stability and thermal analysis of lyophilised wound healing wafers containing an insoluble MMP-3 inhibitor and a non-ionic surfactant. Int J Pharm 356:110–120. doi:10.1016/j.ijpharm.2007.12.043

    Article  PubMed  CAS  Google Scholar 

  16. O’Neil D, Mercer D, Charrier C (2006) Inhibition of biofilm organisms. International Patent A61K 38/04

  17. Pag U, Oedenkoven M, Sass V, Shai Y, Shamova O, Antcheva N, Tossi A, Sahl HG (2008) Analysis of in vitro activities and models of action of synthetic antimicrobial peptides derived from an alpha-helical ‘sequence template’. J Antimicrob Chemother 61:341–352. doi:10.1093/jac/dkm479

    Article  PubMed  CAS  Google Scholar 

  18. Pereira HA (2006) Novel therapies based on cationic antimicrobial peptides. Curr Pharm Biotechnol 7:229–234. doi:10.2174/138920106777950771

    Article  PubMed  CAS  Google Scholar 

  19. Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547. doi:10.1016/j.ijantimicag.2004.09.005

    Article  PubMed  CAS  Google Scholar 

  20. Schauber J, Gallo RL (2008) Antimicrobial peptides and the skin immune defence system. J Allergy Clin Immunol 122:261–266. doi:10.1016/j.jaci.2008.03.027

    Article  PubMed  CAS  Google Scholar 

  21. Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31:2348–2357. doi:10.1016/j.biomaterials.2009.11.082

    Article  PubMed  CAS  Google Scholar 

  22. Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41:1738–1742

    PubMed  CAS  Google Scholar 

  23. Stephens PJ (2011) Dysfunctional wound healing in chronic wounds. In: Farrar D (ed) Advanced wound repair therapies. Woodhead Publishing Limited, Cambridge, pp 3–23

    Chapter  Google Scholar 

  24. Superti F, Ammendolia M, Marchetti M (2008) New advances in anti-HSV chemotherapy. Curr Med Chem 15:900–911. doi:10.2174/092986708783955419

    Article  PubMed  CAS  Google Scholar 

  25. Supp DM, Neely AN (2008) Cutaneous antimicrobial gene therapy: engineering human skin replacements to combat wound infection. Expert Rev Dermatol 3:73–84. doi:10.1586/17469872.3.1.73

    Article  CAS  Google Scholar 

  26. Tenover FC, Goering RV (2009) Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother 64:441–446. doi:10.1093/jac/dkp241

    Article  PubMed  CAS  Google Scholar 

  27. Wild T, Rahbarnia A, Kellner M, Sobotka L, Eberlein T (2010) Basics in nutrition and wound healing. Nutrition 26:862–866. doi:10.1016/j.nut.2010.05.008

    Article  PubMed  Google Scholar 

  28. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329. doi:10.1007/s00109-006-0143-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Emily Hunter and Iain Tough for assistance with operation of the SEM and Dr Tim King for valuable assistance with interpretation of SEM images. The work was supported in part by an award (G08/10) to KHM by Tenovus Scotland. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Lamb.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2140 kb)

Supplementary material 2 (DOC 2634 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Driscoll, N.H., Labovitiadi, O., Cushnie, T.P.T. et al. Production and Evaluation of an Antimicrobial Peptide-Containing Wafer Formulation for Topical Application. Curr Microbiol 66, 271–278 (2013). https://doi.org/10.1007/s00284-012-0268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0268-3

Keywords

Navigation