Skip to main content
Log in

Carbon Catabolite Control is Important for Listeria monocytogenes Biofilm Formation in Response to Nutrient Availability

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The foodborne pathogen Listeria monocytogenes has the ability to develop biofilm in food-processing environment, which becomes a major concern for the food safety. The biofilm formation is strongly influenced by the availability of nutrients and environmental conditions, and particularly enhanced in poor minimal essential medium (MEM) containing glucose rather than in rich brain heart infusion (BHI) broth. To gain better insight into the conserved protein expression profile in these biofilms, the proteomes from biofilm- and planktonic-grown cells from MEM with 50 mM glucose or BHI were compared using two-dimensional polyacrylamide gel electrophoresis followed by MALDI-TOF/TOF analysis. 47 proteins were successfully identified to be either up (19 proteins) or down (28 proteins) regulated in the biofilm states. Most (30 proteins) of them were assigned to the metabolism functional category in cluster of orthologous groups of proteins. Among them, up-regulated proteins were mainly associated with the pentose phosphate pathway and glycolysis, whereas a key enzyme CitC involved in tricarboxylic acid cycle was down-regulated in biofilms compared to the planktonic states. These data implicate the importance of carbon catabolite control for L. monocytogenes biofilm formation in response to nutrient availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Behari J, Youngman P (1998) A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J Bacteriol 180:6316–6324

    PubMed  CAS  Google Scholar 

  2. Chandra H, Basir S, Gupta M, Banerjee N (2010) Glutamine synthetase encoded by glnA-1 is necessary for cell wall resistance and pathogenicity of Mycobacterium bovis. Microbiology 156:3669–3677

    Article  PubMed  CAS  Google Scholar 

  3. Chang Y, Gu W, Fischer N, McLandsborough L (2012) Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis. Appl Microbiol Biotechnol 93(5):2051–2062

    Article  PubMed  CAS  Google Scholar 

  4. Djordjevic D, Wiedmann M, McLandsborough L (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958

    Article  PubMed  CAS  Google Scholar 

  5. Dumas E, Desvaux M, Chambon C, Hébraud M (2009) Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis. Proteomics 9:3136–3155

    Article  PubMed  CAS  Google Scholar 

  6. Fujita Y (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem 73:245–259

    Article  PubMed  CAS  Google Scholar 

  7. Gandhi M, Chikindas M (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  PubMed  Google Scholar 

  8. Helloin E, Jansch L, Phan-Thanh L (2003) Carbon starvation survival of Listeria monocytogenes in planktonic state and in biofilm: a proteomic study. Proteomics 3:2052–2064

    Article  PubMed  CAS  Google Scholar 

  9. Lemon K, Higgins D, Kolter R (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189:4418–4424

    Article  PubMed  CAS  Google Scholar 

  10. Mertins S, Joseph B, Goetz M, Ecke R, Seidel G, Sprehe M, Hillen W, Goebel W, Müller-Altrock S (2007) Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. J Bacteriol 189:473–490

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen P, Abranches J, Phan T, Marquis R (2002) Repressed respiration of oral streptococci grown in biofilms. Curr Microbiol 44:262–266

    Article  PubMed  CAS  Google Scholar 

  12. O’Toole G, Kaplan H, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  13. Premaratne R, Lin W, Johnson E (1991) Development of an improved chemically defined minimal medium for Listeria monocytogenes. Appl Environ Microbiol 57:3046–3048

    PubMed  CAS  Google Scholar 

  14. Resch A, Leicht S, Saric M, Pásztor L, Jakob A, Götz F, Nordheim A (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6:1867–1877

    Article  PubMed  CAS  Google Scholar 

  15. Riedel C, Monk I, Casey P, Waidmann M, Gahan C, Hill C (2009) AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 71:1177–1189

    Article  PubMed  CAS  Google Scholar 

  16. Sadykov M, Hartmann T, Mattes T, Hiatt M, Jann N, Zhu Y, Ledala N, Landmann R, Herrmann M, Rohde H, Bischoff M, Somerville G (2011) CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis. Microbiology 157:3458–3468

    Article  PubMed  CAS  Google Scholar 

  17. Seidl K, Goerke C, Wolz C, Mack D, Berger-Bächi B, Bischoff M (2008) Staphylococcus aureus CcpA affects biofilm formation. Infect Immun 76:2044–2050

    Article  PubMed  CAS  Google Scholar 

  18. Stoll R, Mertins S, Joseph B, Müller-Altrock S, Goebel W (2008) Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media. Microbiology 154:3856–3876

    Article  PubMed  CAS  Google Scholar 

  19. Todhanakasem T, Young G (2008) Loss of flagellar-based motility by Listeria monocytogenes results in the formation of hyperbiofilms. J Bacteriol 190:6030–6034

    Article  PubMed  CAS  Google Scholar 

  20. Tsai H, Hodgson D (2003) Development of a synthetic minimal medium for Listeria monocytogenes. Appl Environ Microbiol 69:6943–6945

    Article  PubMed  CAS  Google Scholar 

  21. Ueda A, Attila C, Whiteley M, Wood T (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2:62–74

    Article  PubMed  CAS  Google Scholar 

  22. Yamazaki Y, Danelishvili L, Wu M, Macnab M, Bermudez L (2006) Mycobacterium avium genes associated with the ability to form a biofilm. Appl Environ Microbiol 72:819–825

    Article  PubMed  CAS  Google Scholar 

  23. Zhou Q, Feng F, Wang L, Feng X, Yin X, Luo Q (2011) Virulence regulator PrfA is essential for biofilm formation in Listeria monocytogenes but not in Listeria innocua. Curr Microbiol 63:186–192

    Article  PubMed  CAS  Google Scholar 

  24. Zhu Y, Xiong Y, Sadykov M, Fey P, Lei M, Lee C, Bayer A, Somerville G (2009) Tricarboxylic acid cycle-dependent attenuation of Staphylococcus aureus in vivo virulence by selective inhibition of amino acid transport. Infect Immun 77:4256–4264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (30970111), Excellent Youth Foundation of Hubei Scientific Committee (No. 2009CDA124) and CCNU Project (No. CCNU09Y01001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Luo.

Additional information

Qingchun Zhou and Xiaoqin Feng contributed equally to this work and should be considered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Feng, X., Zhang, Q. et al. Carbon Catabolite Control is Important for Listeria monocytogenes Biofilm Formation in Response to Nutrient Availability. Curr Microbiol 65, 35–43 (2012). https://doi.org/10.1007/s00284-012-0125-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0125-4

Keywords

Navigation