Skip to main content
Log in

An In Vitro Study on Bacterial Growth Interactions and Intestinal Epithelial Cell Adhesion Characteristics of Probiotic Combinations

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aims of this study were to examine long-term growth interactions of five probiotic strains (Lactobacillus casei 01, Lactobacillus plantarum HA8, Lactobacillus rhamnosus GG, Lactobacillus reuteri ATCC 55730 and Bifidobacterium lactis Bb12) either alone or in combination with Propionibacterium jensenii 702 in a co-culture system and to determine their adhesion ability to human colon adenocarcinoma cell line Caco-2. Growth patterns of probiotic Lactobacillus strains were not considerably affected by the presence of P. jensenii 702, whereas lactobacilli exerted a strong antagonistic action against P. jensenii 702. In the co-culture of Bif. lactis Bb12 and P. jensenii 702, a significant synergistic influence on growth of both bacteria was observed (P < 0.05). The results of adhesion assay showed that when probiotic strains were tested in combination, there was evidence of an associated effect on percentage adherence. However, in most cases these differences were not statistically significant (P < 0.05). Adhesion percentage of Lb. casei 01 and Lb. rhamnosus GG both decreased significantly in the presence of P. jensenii 702 compared to their adhesion levels when alone (P < 0.05). These results show that the survival and percentage adhesion of some probiotic strains may be influenced by the presence of other strains and this should be considered when formulating in the probiotic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65(1):351–354

    CAS  PubMed  Google Scholar 

  2. Arihara K, Ogihara S, Mukai T, Itoh M, Kondo Y (1996) Salivacin 140, a novel bacteriocin from Lactobacillus salivarius subsp. salicinius T140 active against pathogenic bacteria. Lett Appl Microbiol 22(6):420–424

    Article  CAS  PubMed  Google Scholar 

  3. Beachey EH (1981) Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis 143(3):325–345

    CAS  PubMed  Google Scholar 

  4. Bougle D, Roland N, Lebeurrier F, Arhan P (1999) Effect of propionibacteria supplementation on fecal bifidobacteria and segmental colonic transit time in healthy human subjects. Scand J Gastroenterol 34(2):144–148

    Article  CAS  PubMed  Google Scholar 

  5. Brink M, Todorov SD, Martin JH, Senekal M, Dicks LMT (2006) The effect of prebiotics on production of antimicrobial compounds, resistance to growth at low pH and in the presence of bile, and adhesion of probiotic cells to intestinal mucus. J Appl Microbiol 100(4):813–820

    Article  CAS  PubMed  Google Scholar 

  6. Castellano P, Belfiore C, Fadda S, Vignolo G (2008) A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Sci 79(3):483–499

    Article  CAS  Google Scholar 

  7. Collado MC, Meriluoto J, Salminen S (2007) Development of new probiotics by strain combinations: is it possible to improve the adhesion to intestinal mucus? J Dairy Sci 90(6):2710–2716

    Article  CAS  PubMed  Google Scholar 

  8. FAO/WHO (2001) Evaluation of health and nutritional properties of powder milk with live lactic acid bacteria. FAO/WHO, Cordoba, Argentina

    Google Scholar 

  9. FAO/WHO (2001) Report on joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. FAO/WHO, Cordoba, Argentina

    Google Scholar 

  10. Frohlich-Wyder MT, Bachmann HP, Casey MG (2002) Interaction between propionibacteria and starter/non-starter lactic acid bacteria in Swiss-type cheeses. Lait 82(1):1–15

    Article  CAS  Google Scholar 

  11. Gardner N, Champagne CP (2005) Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. J Appl Microbiol 99(5):1236–1245

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez B, Arca P, Mayo B, Suarez JE (1994) Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl Environ Microbiol 60(6):2158–2163

    CAS  PubMed  Google Scholar 

  13. Hojo K, Yoda N, Tsuchita H, Ohtsu T, Seki K, Taketomo N, Murayama T, Iino H (2002) Effect of ingested clture of Propionibacterium freudenreichii ET-3 on fecal microflora and stool frequency in healthy females. Biosci Microflora 21:115–120

    Google Scholar 

  14. Huang Y, Adams MC (2003) An in vitro model for investigating intestinal adhesion of potential dairy propionibacteria probiotic strains using cell line C2BBe1. Lett Appl Microbiol 36(4):213–216

    CAS  PubMed  Google Scholar 

  15. Hugenholtz J, Hunik J, Santos H, Smid E (2002) Nutraceutical production by propionibacteria. Lait 82(1):103–112

    Article  CAS  Google Scholar 

  16. Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9(2):179–188

    Article  CAS  PubMed  Google Scholar 

  17. Jimenez-Diaz R, Rios-Sanchez RM, Desmazeaud M, Ruiz-Barba JL, Piard JC (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 59(5):1416–1424

    CAS  PubMed  Google Scholar 

  18. Kaneko T (1999) A novel bifidogenic growth stimulator produced by Propionibacterium freudenreichii. Biosci Microflora 18(2):73–80

    CAS  Google Scholar 

  19. Kaneko T, Mori H, Iwata M, Meguro S (1994) Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J Dairy Sci 77(2):393–404

    Article  CAS  PubMed  Google Scholar 

  20. Kaneko T, Noda K (1996) Bifidogenic growth stimulator produced by propionibacteria. Jpn J Dairy Food Sci 45(4):A83–A90

    CAS  Google Scholar 

  21. Kouya T, Misawa K, Horiuchi M, Nakayama E, Deguchi H, Tanaka T, Taniguchi M (2007) Production of extracellular bifidogenic growth stimulator by anaerobic and aerobic cultivations of several propionibacterial strains. J Biosci Bioeng 103(5):464–471

    Article  CAS  PubMed  Google Scholar 

  22. Lan A, Bruneau A, Bensaada M, Philippe C, Bellaud P, Rabot S, Jan G (2008) Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1, 2-dimethylhydrazine. Br J Nutr 100(6):1251–1259

    Article  CAS  PubMed  Google Scholar 

  23. Lan A, Lagadic-Gossmann D, Lemaire C, Brenner C, Jan G (2007) Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis 12(3):573–591

    Article  CAS  PubMed  Google Scholar 

  24. Lehto EM, Salminen S (1997) Adhesion of two Lactobacillus strains, one Lactococcus and one Propionibacterium strain to cultured human intestinal Caco-2 cell line. Biosci Microflora 16:13–17

    Google Scholar 

  25. Malik AC, Reinbold GW, Vedamuthu ER (1968) An evaluation of the taxonomy of Propionibacterium. Can J Microbiol 14(11):1185–1191

    Article  CAS  PubMed  Google Scholar 

  26. Michel C, Roland N, Lecannu G, Hervte C, Avice JC, Rival M, Cherbut C (2005) Colonic infusion with Propionibacterium acidipropionici reduces severity of chemically-induced colitis in rats. Lait 85(1–2):99–111

    Article  CAS  Google Scholar 

  27. Mitsuyama K, Masuda J, Yamasaki H, Kuwaki K, Kitazaki S, Koga H, Uchida M, Sata M (2007) Treatment of ulcerative colitis with milk whey culture with Propionibacterium freudenreichii. J Intest Microbiol 21:143–147

    Google Scholar 

  28. Mori H, Sato Y, Taketomo N, Kamiyama T, Yoshiyama Y, Meguro S, Sato H, Kaneko T (1997) Isolation and structural identification of bifidogenic growth stimulator produced by Propionibacterium freudenreichii. J Dairy Sci 80(9):1959–1964

    CAS  PubMed  Google Scholar 

  29. Mourad K, Halima ZK, Nour-Eddine K (2005) Detection and activity of plantaricin OL15 a bacteriocin produced by Lactobacillus plantarum OL15 isolated from Algerian fermented olives. Grasas Y Aceites 56(3):192–197

    Article  CAS  Google Scholar 

  30. Munoa FJ, Pares R (1988) Selective medium for isolation and enumeration of Bifidobacterium spp. Appl Environ Microbiol 54(7):1715–1718

    CAS  PubMed  Google Scholar 

  31. Okkers DJ, Dicks LM, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol 87(5):726–734

    Article  CAS  PubMed  Google Scholar 

  32. Ouwehand AC (2004) The probiotic potential of Propionibacteria. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic acid bacteria: microbiological and functional aspects. Marcel Dekker Inc, New York, pp 159–174

    Google Scholar 

  33. Ouwehand AC, Suomalainen T, Tolkko S, Salminen S (2002) In vitro adhesion of propionic acid bacteria to human intestinal mucus. Lait 82(1):123–130

    Article  CAS  Google Scholar 

  34. Parker JA, Moon NJ (1982) Interactions of Lactobacillus and Propionibacterium in mixed culture. J Food Prot 45(4):326–330

    Google Scholar 

  35. Perez Chaia A, Zarate G, Oliver G (1999) The probiotic properties of propionibacteria. Lait 79(1):175–185

    Article  Google Scholar 

  36. Perez Chaia A, deMacias MEN, Oliver G (1995) Propionibacteria in the gut: effect on some metabolic activities of the host. Lait 75(4–5):435–445

    Article  CAS  Google Scholar 

  37. Perez Chaia A, Strasser de Saad AM, de Ruiz Holgado AP, Oliver G (1995) Short-chain fatty acids modulate growth of lactobacilli in mixed culture fermentations with propionibacteria. Int J Food Microbiol 26(3):365–374

    Article  CAS  PubMed  Google Scholar 

  38. Perez Chaia A, Strasser de Saad AM, de Ruiz Holgado AP, Oliver G (1994) Competitive inhibition of Propionibacterium acidipropionici by mixed culturing with Lactobacillus helveticus. J Food Prot 57(4):341–344

    Google Scholar 

  39. Piveteau PG, O’Callaghan J, Lyons B, Condon S, Cogan TM (2002) Characterisation of the stimulants produced by Lactobacillus helveticus in milk for Propionibacterium freudenreichii. Lait 82(1):69–80

    Article  CAS  Google Scholar 

  40. Piveteau P (1999) Metabolism of lactate and sugars by dairy propionibacteria: a review. Lait 79(1):23–41

    Article  CAS  Google Scholar 

  41. Rogosa M, Mitchell JA, Wiseman RF (1951) A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J Bacteriol 62(1):132–133

    CAS  PubMed  Google Scholar 

  42. Satomi K, Kurihara H, Isawa K, Mori H, Kaneko T (1999) Effects of culture-powder of Propionibacterium freudenreichii ET-3 on fecal microflora of normal adults. Biosci Microflora 18:27–30

    Google Scholar 

  43. Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17(5):741–754

    Article  CAS  PubMed  Google Scholar 

  44. Tuomola EM, Ouwehand AC, Salminen SJ (1999) Human ileostomy glycoproteins as a model for small intestinal mucus to investigate adhesion of probiotics. Lett Appl Microbiol 28(3):159–163

    Article  CAS  PubMed  Google Scholar 

  45. Uchida M, Yoda N, Hojo K (2005) Efficacy of the bifidogenic growth stimulator (BGS) produced by Propionibacterium freudenreichii ET-3. Foods Food Ingred J Jpn 210(12):1132–1140

    Google Scholar 

  46. van Reenen CA, Dicks LM, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84(6):1131–1137

    Article  PubMed  Google Scholar 

  47. Warminska-Radyko I, Laniewska-Moroz L, Babuchowski A (2002) Possibilities for stimulation of Bifidobacterium growth by propionibacteria. Lait 82(1):113–121

    Article  CAS  Google Scholar 

  48. Zarate G, Perez Chaia A, Gonzalez S, Oliver G (2000) Viability and beta-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 63(9):1214–1221

    CAS  PubMed  Google Scholar 

  49. Zarate G, Morata De Ambrosini V, Perez Chaia A, Gonzalez S (2002) Some factors affecting the adherence of probiotic Propionibacterium acidipropionici CRL 1198 to intestinal epithelial cells. Can J Microbiol 48(5):449–457

    Article  CAS  PubMed  Google Scholar 

  50. Zarate G, Morata De Ambrosini V, Perez Chaia A, Gonzalez SN (2002) Adhesion of dairy propionibacteria to intestinal epithelial tissue in vitro and in vivo. J Food Prot 65(3):534–539

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr Dave Phelan (SEM unit, The University of Newcastle, Australia) for his assistance with the electron microscopy. They would also like to thank Dr. Matthias Ernst (Ludwig Institute in Melbourne, Australia) for kindly providing the Caco-2 cell line and Mr. Kim Colyvas (Statistical Support Service, The University of Newcastle, Australia) for advice and assistance with statistical analysis of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahta Moussavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moussavi, M., Adams, M.C. An In Vitro Study on Bacterial Growth Interactions and Intestinal Epithelial Cell Adhesion Characteristics of Probiotic Combinations. Curr Microbiol 60, 327–335 (2010). https://doi.org/10.1007/s00284-009-9545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9545-1

Keywords

Navigation