Skip to main content
Log in

A Proteomic Approach Towards the Analysis of Salt Tolerance in Rhizobium etli and Sinorhizobium meliloti Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Soluble proteins from the salt-tolerant Rhizobium etli strain EBRI 26 were separated by two-dimensional (2D) gel electrophoresis and visualised by Commassie staining. Six proteins are highly expressed after induction by 4% NaCl compared to the non-salt-stressed cells. These proteins have pI between 5 and 5.5 and masses of approximately 22, 25, 40, 65, 70, and 95 kDa. These proteins were analysed by Matrix-assisted laser adsorption ionization time of flight (MALDI-TOF) after digestion with trypsin. Despite having very good peptide mass fingerprint data, these proteins could not be identified, because the genome sequence of R. etli is not yet published. In a second approach, soluble proteins from salt-induced or non-salt-induced cultures from R. etli strain EBRI 26 were separately labelled with different fluorescent cyano-dyes prior to 2D difference in gel electrophoresis. Results revealed that 49 proteins are differentially expressed after the addition of sodium chloride. Fourteen proteins are overexpressed and 35 were downregulated. The genome of Sinorhizobium meliloti, a closely related species to R. etli, has been published. Similar experiments using Sinorhizobium meliloti strain 2011 identified four overexpressed and six downregulated proteins. Among the overexpressed protein is a carboxynospermidin decarboxylase, which plays an important role in the biosynthesis of spermidin (polyamine). The enzyme catalase is among the downregulated proteins. These proteins may play a role in salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  1. Asch F, Dingkuhn M, Wittstock C, Doerffling K (1999) Sodium and potassium uptake of rice panicles as affected by salinity and season in relation to yield components. Plant Soil 207:133–145

    Google Scholar 

  2. Aziz A, Martin-Tanguy J, Larher F (1999) Salt stress-induced proline accumulation and changes in tyramine and ployamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci 145:83–91

    Article  CAS  Google Scholar 

  3. Bolaños L, El-Hamdaoui A, Bonilla I (2003) Recovery of development and functionality of nodules and plant growth in salt-stressed Pisum sativum-Rhizobium leguminosarum symbiosis by boron and calcium. J Plant Physiol 160:1493–1497

    PubMed  Google Scholar 

  4. Botsford JL (1990) Analysis of protein expression in response to osmotic stress in Escherichia coli. FEMS Microbiol Lett 72:355–360

    CAS  Google Scholar 

  5. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  6. Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viégas RA, Silveira JAG (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytologist 163:563–571

    Article  CAS  Google Scholar 

  7. Delgado MJ, Garrido JM, Ligero F, Lluch C (1993) Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress. Physiol Plantarum 89:824–829

    CAS  Google Scholar 

  8. Die Lajudie P, Laurent-Fulele E, Willems A, Tork U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290

    Google Scholar 

  9. Djordjevic MA (2004) Sinorhizobium meliloti metabolism in the root nodule: A proteomic perspective. Proteomics 4:1859–1872

    Article  CAS  PubMed  Google Scholar 

  10. Drolet G, Dumbroff EB, Legge RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371

    Article  CAS  Google Scholar 

  11. El-Sheikh EAE, Wood M (1995) Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biol Biochem 27:657–661

    CAS  Google Scholar 

  12. Encarnación S, Guzmán Y, Dunn MF, Hernández M, Vargas Maria C, Mora J (2003) Proteom analysis of aerobic and fermentative metabolism in Rhizobium etli CE3. Proteomics 3:1077–1085

    Article  PubMed  Google Scholar 

  13. Gade D, Thiermann J, Markowsky D, Rabus R (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. J Mol Microbiol Biotech 5:240–251

    CAS  Google Scholar 

  14. Georgiev GI, Atkias CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15:239–255

    Google Scholar 

  15. Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dréano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thébault P, Vandenbol M, Vorhälter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizosbium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  16. Galibert F, Barloy-Hubler F, Capela D, Gouzy J (2000) Sequencing the Sinorhizobium meliloti genome. DNA Sequence 11:207–210

    CAS  PubMed  Google Scholar 

  17. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  PubMed  Google Scholar 

  18. Hellman V, Wernstedt C, Gonez J, Heldin CH (1995) Improvement of an (In-Gel) digestion procedure for the micro preparation of internal protein fragments for amino acid sequencing. Anal Biochem 224:421–455

    Article  Google Scholar 

  19. Hu Y, Schmidhalter U (1998) Spatial distributions of inorganic ions and sugars contributing to osmotic adjustment in the elongating wheat leaf under saline soil conditions. Austr J Plant Physiol 25:591–597

    CAS  Google Scholar 

  20. Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plantarum 121:101–107

    CAS  PubMed  Google Scholar 

  21. Lauber WM, Carroll JA, Dufield DR, Kiesel JR, Radabaugh MR, Malone JP (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 22:906–918

    Article  CAS  PubMed  Google Scholar 

  22. Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Romero E, Caballero-Mellado J (1996) Rhizobium phylogenies and bacterial genetic. Crit Rev Plant Sci 15:113–140

    CAS  Google Scholar 

  24. Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Lluch C, Sanjuan J (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant-Microbe Interact 15:225–232

    CAS  PubMed  Google Scholar 

  25. Oren A (1999) Bioenergetic aspects of Halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  Google Scholar 

  26. Patton WF (2002) Detection technologies in proteom analysis. J Chromatogr B 771:3–31

    CAS  Google Scholar 

  27. Peick B, Graumann P, Schmid R, Marahiel M, Werner D (1999) Differential pH-induced proteins in Rhizobium tropici CIAT 899 and Rhizobium etli CIAT 611. Soil Biol Biochem 31:189–194

    Article  CAS  Google Scholar 

  28. Rabus R, Brüchert V, Amann J, Könneke M (2002) Physiological response to temperature changes of the marine, sulphate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417

    CAS  Google Scholar 

  29. Rai R, Nasar SKT, Singh SJ, Prasad V (1985) Interaction between Rhizobium strains and lentil (Lens culinaris) genotypes under salt-stress. J Agric Sci 104:199–205

    Google Scholar 

  30. Rüberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Pühler A, Weidner S, Becker A (2003) Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. J Biotech 106:255–268

    Article  Google Scholar 

  31. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  32. Shamseldin A, Werner D (2005) High salt and high pH tolerance of new isolated R. etli strains from Egyptian soils. Curr Microbiol 50:11–16

    Article  CAS  PubMed  Google Scholar 

  33. Smith LT, Smith GM (1989) An osmoregulated dipeptide in stressed Rhizobium meiloti. J Bacteriol 171:4714–4717

    CAS  PubMed  Google Scholar 

  34. Soussi M, Ocaña A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Botany 49:1329–1337

    Article  CAS  Google Scholar 

  35. TeChien C, Maundu J, Cavaness J, Dandurand LM, Orser CS (1992) Characterization of salt-tolerant and salt-sensitive mutants of Rhizobium leguminosarum biovar viciae strain C1204b. FEMS Microbiol Lett 90:135–140

    Google Scholar 

  36. Tejera NA, Campos R, Sanjuan J, Lluch C (2004) Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J Plant Physiol 161:329–338

    Article  CAS  PubMed  Google Scholar 

  37. Tiburcio AF, Besford RT, Capell T, Borrel A, Testillano PS, Risueño MC (1994) Mechanisms of polyamine action during senescence responses induced by osmotic stress. J Exp Botany 45:1789–1800

    CAS  Google Scholar 

  38. Unni S, Rao KK (2001) Protein and lipopolysaccharide profiles of a salt-sensitive Rhizobium sp. and its exopolysaccharide-deficient mutant. Soil Biol Biochem 33:111–115

    Article  CAS  Google Scholar 

  39. Werner D (1999) Körnerleguminosen: Biologische Stickstoff-Fixierung. In: Keller ER, Hanus H, Heyland K-U (Hrgs) Handbuch des Pflanzenbaues, Band 3 Knollen- und Wurzelfrüchte, Körner- und Futterleguminosen. Stuttgart, Verlag Eugen Ulmer, S. 554–562

  40. Werner D, Wilcockson J, Zimmerman E (1975) Adsorption and selection of rhizobia by ion exchange papers. Arch Microbiol 105:27–32

    Article  CAS  PubMed  Google Scholar 

  41. Zahran HH, Zaghloul TI, Ahmad MS, Ahmad ES (2004) A salt-tolerant and nitrogen fixing mutant of Rhizobium leguminosarum bv. viciae isolated from Egypt. Nitrogen Fixation Conferrence, Toulouse, France, 24–27 July, Abstract p 132

  42. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  Google Scholar 

  43. Zahran HH, Rasanen LA, Karsisto M, Lindström K (1994) Alteration of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10:100–105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Klaus Lingelbach for permitting use of his protein analysis facility. We also thank Jürgen Thiermann from Amersham Biosciences for his assistance with the DIGE technology and analysis software, World Lab Organization for a short grant, and the EU for support through the INCO-DEV project ICA4-CT-2001-10057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamseldin, A., Nyalwidhe, J. & Werner, D. A Proteomic Approach Towards the Analysis of Salt Tolerance in Rhizobium etli and Sinorhizobium meliloti Strains. Curr Microbiol 52, 333–339 (2006). https://doi.org/10.1007/s00284-005-6472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-6472-7

Keywords

Navigation