Skip to main content

Advertisement

Log in

Involvement of inflammatory factors in pancreatic carcinogenesis and preventive effects of anti-inflammatory agents

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Chronic inflammation is known to be a risk for many cancers, including pancreatic cancer. Heavy alcohol drinking and cigarette smoking are major causes of pancreatitis, and epidemiological studies have shown that smoking and chronic pancreatitis are risk factors for pancreatic cancer. Meanwhile, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are elevated in pancreatitis and pancreatic cancer tissues in humans and in animal models. Selective inhibitors of iNOS and COX-2 suppress pancreatic cancer development in a chemical carcinogenesis model of hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP). In addition, hyperlipidemia, obesity, and type II diabetes are also suggested to be associated with chronic inflammation in the pancreas and involved in pancreatic cancer development. We have shown that a high-fat diet increased pancreatic cancer development in BOP-treated hamsters, along with aggravation of hyperlipidemia, severe fatty infiltration, and increased expression of adipokines and inflammatory factors in the pancreas. Of note, fatty pancreas has been observed in obese and/or diabetic cases in humans. Preventive effects of anti-hyperlipidemic/anti-diabetic agents on pancreatic cancer have also been shown in humans and animals. Taking this evidence into consideration, modulation of inflammatory factors by anti-inflammatory agents will provide useful data for prevention of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki W, Sobue T (2012) Cancer incidence and incidence rates in Japan in 2006: based on data from 15 population-based cancer registries in the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol 42:139–147

    Article  PubMed  Google Scholar 

  2. Matsuno S, Egawa S, Shibuya K, Shimamura H, Sunamura M, Takeda K, Katoh H, Okada S, Suda K, Nakao A, Isaji S, Hiraoka T, Hosotani R, Imaizumi T (2000) Pancreatic cancer: current status of treatment and survival of 16 071 patients diagnosed from 1981–1996, using the Japanese National Pancreatic Cancer Database. Int J Clin Oncol 5:153–157

    Article  Google Scholar 

  3. Statistics Bureau, Ministry of Internal Affairs and Communications (2011) Statistical handbook of Japan 2011. Chapter 2, Population

  4. Lowenfels AB, Maisonneuve P (2004) Epidemiology and prevention of pancreatic cancer. Jpn J Clin Oncol 34:238–244

    Article  PubMed  Google Scholar 

  5. Everhart J, Wright D (1995) Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 273:1605–1609

    Article  PubMed  CAS  Google Scholar 

  6. Fuchs CS, Colditz GA, Stampfer MJ, Giovannucci EL, Hunter DJ, Rimm EB, Willett WC, Speizer FE (1996) A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med 156:2255–2260

    Article  PubMed  CAS  Google Scholar 

  7. Michaud DS (2004) Epidemiology of pancreatic cancer. Minerva Chir 59:99–111

    PubMed  CAS  Google Scholar 

  8. Patel AV, Rodriguez C, Bernstein L, Chao A, Thun MJ, Calle EE (2005) Obesity, recreational physical activity, and risk of pancreatic cancer in a large U.S. cohort. Cancer Epidemiol Biomarkers Prev 14:459–466

    Article  PubMed  Google Scholar 

  9. Huxley R, Ansary-Moghaddam A, Berrington de González A, Barzi F, Woodward M (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 92:2076–2083

    Article  PubMed  CAS  Google Scholar 

  10. Raimondi S, Lowenfels AB, Morselli-Labate AM, Maisonneuve P, Pezzilli R (2010) Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol 24:349–358

    Article  PubMed  Google Scholar 

  11. Cancer Control and Health Promotion Division, Health Service Bureau, Ministry of Health, Labour and Welfare, Japan (2011) The National Health and Nutrition Survey in Japan

  12. Agency NT http://www.nta.go.jp/shiraberu/senmonjoho/sake/shiori-gaikyo/shiori/2012

  13. Yoshiike N, Matsumura Y, Iwaya M, Sugiyama M, Yamaguchi M (1996) National Nutrition Survey in Japan. J Epidemiol 6:S189–S200

    Article  PubMed  CAS  Google Scholar 

  14. Otsuki M, Tashiro M (2007) Chronic pancreatitis and pancreatic cancer, lifestyle-related diseases. Intern Med 46:109–113

    Article  PubMed  Google Scholar 

  15. Farrow B, Evers BM (2002) Inflammation and the development of pancreatic cancer. Surg Oncol 10:153–169

    Article  PubMed  Google Scholar 

  16. Bhanot UK, Moller P (2009) Mechanisms of parenchymal injury and signaling pathways in ectatic ducts of chronic pancreatitis: implications for pancreatic carcinogenesis. Lab Invest 89:489–497

    Article  PubMed  CAS  Google Scholar 

  17. Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, Dimagno EP, Andrén-Sandberg A, Domellöf L (1993) Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 328:1433–1437

    Article  PubMed  CAS  Google Scholar 

  18. Chari ST, Mohan V, Pitchumoni CS, Viswanathan M, Madanagopalan N, Lowenfels AB (1994) Risk of pancreatic carcinoma in tropical calcifying pancreatitis: an epidemiologic study. Pancreas 9:62–66

    Article  PubMed  CAS  Google Scholar 

  19. Lowenfels AB, Maisonneuve P, DiMagno EP, Elitsur Y, Gates LK Jr, Perrault J, Whitcomb DC (1997) Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst 89:442–446

    Article  PubMed  CAS  Google Scholar 

  20. Malka D, Hammel P, Maire F, Rufat P, Madeira I, Pessione F, Lévy P, Ruszniewski P (2002) Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut 51:849–852

    Article  PubMed  CAS  Google Scholar 

  21. Tulinius H, Sigfússon N, Sigvaldason H, Bjarnadóttir K, Tryggvadóttir L (1997) Risk factors for malignant diseases: a cohort study on a population of 22,946 Icelanders. Cancer Epidemiol Biomarkers Prev 6:863–873

    PubMed  CAS  Google Scholar 

  22. Greer JB, Whitcomb DC (2009) Inflammation and pancreatic cancer: an evidence-based review. Curr Opin Pharmacol 9:411–418

    Article  PubMed  CAS  Google Scholar 

  23. Apte MV, Pirola RC, Wilson JS (2009) Pancreas: alcoholic pancreatitis—it's the alcohol, stupid. Nat Rev Gastroenterol Hepatol 6:321–322

    Article  PubMed  Google Scholar 

  24. Yadav D, Hawes RH, Brand RE, Anderson MA, Money ME, Banks PA, Bishop MD, Baillie J, Sherman S, DiSario J, Burton FR, Gardner TB, Amann ST, Gelrud A, Lawrence C, Elinoff B, Greer JB, O'Connell M, Barmada MM, Slivka A, Whitcomb DC (2009) Alcohol consumption, cigarette smoking, and the risk of recurrent acute and chronic pancreatitis. Arch Intern Med 169:1035–1045

    Article  PubMed  Google Scholar 

  25. Wilson JS, Apte MV, Thomas MC, Haber PS, Pirola RC (1992) Effects of ethanol, acetaldehyde and cholesteryl esters on pancreatic lysosomes. Gut 33:1099–1104

    Article  PubMed  CAS  Google Scholar 

  26. Haber PS, Wilson JS, Apte MV, Pirola RC (1993) Fatty acid ethyl esters increase rat pancreatic lysosomal fragility. J Lab Clin Med 121:759–764

    PubMed  CAS  Google Scholar 

  27. Apte MV, Haber PS, Norton ID, Wilson JS (1998) Alcohol and the pancreas. Addict Biol 3:137–150

    Article  Google Scholar 

  28. Haber PS, Wilson JS, Apte MV, Korsten MA, Pirola RC (1994) Chronic ethanol consumption increases the fragility of rat pancreatic zymogen granules. Gut 35:1474–1478

    Article  PubMed  CAS  Google Scholar 

  29. Apte MV, Wilson JS, Korsten MA, McCaughan GW, Haber PS, Pirola RC (1995) Effects of ethanol and protein deficiency on pancreatic digestive and lysosomal enzymes. Gut 36:287–293

    Article  PubMed  CAS  Google Scholar 

  30. Gukovskaya AS, Mouria M, Gukovsky I, Reyes CN, Kasho VN, Faller LD, Pandol SJ (2002) Ethanol metabolism and transcription factor activation in pancreatic acinar cells in rats. Gastroenterology 122:106–118

    Article  PubMed  CAS  Google Scholar 

  31. Criddle DN, Murphy J, Fistetto G, Barrow S, Tepikin AV, Neoptolemos JP, Sutton R, Petersen OH (2006) Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology 130:781–793

    Article  PubMed  CAS  Google Scholar 

  32. Heinen MM, Verhage BA, Ambergen TA, Goldbohm RA, van den Brandt PA (2009) Alcohol consumption and risk of pancreatic cancer in the Netherlands cohort study. Am J Epidemiol 169:1233–1242

    Article  PubMed  Google Scholar 

  33. Jiao L, Silverman DT, Schairer C, Thiebaut AC, Hollenbeck AR, Leitzmann MF, Schatzkin A, Stolzenberg-Solomon RZ (2009) Alcohol use and risk of pancreatic cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol 169:1043–1051

    Article  PubMed  Google Scholar 

  34. Gapstur SM, Jacobs EJ, Deka A, McCullough ML, Patel AV, Thun MJ (2011) Association of alcohol intake with pancreatic cancer mortality in never smokers. Arch Intern Med 171:444–451

    Article  PubMed  Google Scholar 

  35. McCoy GD, Wynder EL (1979) Etiological and preventive implications in alcohol carcinogenesis. Cancer Res 39:2844–2850

    PubMed  CAS  Google Scholar 

  36. Tuyns AJ (1979) Epidemiology of alcohol and cancer. Cancer Res 39:2840–2843

    PubMed  CAS  Google Scholar 

  37. Driver HE, Swann PF (1987) Alcohol and human cancer (review). Anticancer Res 7:309–320

    PubMed  CAS  Google Scholar 

  38. Rohrmann S, Linseisen J, Vrieling A, Boffetta P, Stolzenberg-Solomon RZ, Lowenfels AB, Jensen MK, Overvad K, Olsen A, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Fagherazzi G, Misirli G, Lagiou P, Trichopoulou A, Kaaks R, Bergmann MM, Boeing H, Bingham S, Khaw KT, Allen N, Roddam A, Palli D, Pala V, Panico S, Tumino R, Vineis P, Peeters PH, Hjartaker A, Lund E, Redondo Cornejo ML, Agudo A, Arriola L, Sanchez MJ, Tormo MJ, Barricarte Gurrea A, Lindkvist B, Manjer J, Johansson I, Ye W, Slimani N, Duell EJ, Jenab M, Michaud DS, Mouw T, Riboli E, Bueno-de-Mesquita HB (2009) Ethanol intake and the risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 20:785–794

    Article  PubMed  Google Scholar 

  39. Michaud DS, Vrieling A, Jiao L, Mendelsohn JB, Steplowski E, Lynch SM, Wactawski-Wende J, Arslan AA, Bas Bueno-de-Mesquita H, Fuchs CS, Gross M, Helzlsouer K, Jacobs EJ, Lacroix A, Petersen G, Zheng W, Allen N, Ammundadottir L, Bergmann MM, Boffetta P, Buring JE, Canzian F, Chanock SJ, Clavel-Chapelon F, Clipp S, Freiberg MS, Michael Gaziano J, Giovannucci EL, Hankinson S, Hartge P, Hoover RN, Allan Hubbell F, Hunter DJ, Hutchinson A, Jacobs K, Kooperberg C, Kraft P, Manjer J, Navarro C, Peeters PH, Shu XO, Stevens V, Thomas G, Tjønneland A, Tobias GS, Trichopoulos D, Tumino R, Vineis P, Virtamo J, Wallace R, Wolpin BM, Yu K, Zeleniuch-Jacquotte A, Stolzenberg-Solomon RZ (2010) Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes Control 21:1213–1225

    Article  PubMed  Google Scholar 

  40. Lin Y, Tamakoshi A, Hayakawa T, Ogawa M, Ohno Y (2000) Cigarette smoking as a risk factor for chronic pancreatitis: a case–control study in Japan. Research Committee on Intractable Pancreatic Diseases. Pancreas 21:109–114

    Article  PubMed  CAS  Google Scholar 

  41. Maisonneuve P, Lowenfels AB, Müllhaupt B, Cavallini G, Lankisch PG, Andersen JR, Dimagno EP, Andrén-Sandberg A, Domellöf L, Frulloni L, Ammann RW (2005) Cigarette smoking accelerates progression of alcoholic chronic pancreatitis. Gut 54:510–514

    Article  PubMed  CAS  Google Scholar 

  42. Maisonneuve P, Frulloni L, Mullhaupt B, Faitini K, Cavallini G, Lowenfels AB, Ammann RW (2006) Impact of smoking on patients with idiopathic chronic pancreatitis. Pancreas 33:163–168

    Article  PubMed  Google Scholar 

  43. Qiu D, Kurosawa M, Lin Y, Inaba Y, Matsuba T, Kikuchi S, Yagyu K, Motohashi Y, Tamakoshi A (2005) Overview of the epidemiology of pancreatic cancer focusing on the JACC Study. J Epidemiol 15(Suppl 2):S157–S167

    Article  PubMed  Google Scholar 

  44. Yun JE, Jo I, Park J, Kim MT, Ryu HG, Odongua N, Kim E, Jee SH (2006) Cigarette smoking, elevated fasting serum glucose, and risk of pancreatic cancer in Korean men. Int J Cancer 119:208–212

    Article  PubMed  CAS  Google Scholar 

  45. Maisonneuve P, Lowenfels AB (2002) Chronic pancreatitis and pancreatic cancer. Dig Dis 20:32–37

    Article  PubMed  Google Scholar 

  46. IARC (2004) Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83:1–1438

    Google Scholar 

  47. Apte MV, Pirola RC, Wilson JS (2005) Where there's smoke there's not necessarily fire. Gut 54:446–447

    Article  PubMed  CAS  Google Scholar 

  48. Bockman DE, Black O Jr, Mills LR, Webster PD (1978) Origin of tubular complexes developing during induction of pancreatic adenocarcinoma by 7,12-dimethylbenz(a)anthracene. Am J Pathol 90:645–658

    PubMed  CAS  Google Scholar 

  49. Rao MS, Reddy JK (1980) Histogenesis of pseudo-ductular changes induced in the pancreas of guinea pigs treated with N-methyl-N-nitrosourea. Carcinogenesis 1:1027–1037

    Article  PubMed  CAS  Google Scholar 

  50. Bockman DE, Guo J, Buchler P, Muller MW, Bergmann F, Friess H (2003) Origin and development of the precursor lesions in experimental pancreatic cancer in rats. Lab Invest 83:853–859

    PubMed  Google Scholar 

  51. Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, Feldmann G, Stoffers DA, Konieczny SF, Leach SD, Maitra A (2008) Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci U S A 105:18913–18918

    Article  PubMed  CAS  Google Scholar 

  52. Yadav D, O'Connell M, Papachristou GI (2012) Natural history following the first attack of acute pancreatitis. Am J Gastroenterol 107:1096–1103

    Article  PubMed  Google Scholar 

  53. Li L, Zhang SN (2008) Management of pancreatic duct stone. Hepatobiliary Pancreat Dis Int 7:9–10

    PubMed  CAS  Google Scholar 

  54. Dufour MC, Adamson MD (2003) The epidemiology of alcohol-induced pancreatitis. Pancreas 27:286–290

    Article  PubMed  Google Scholar 

  55. Banim PJ, Luben RN, Bulluck H, Sharp SJ, Wareham NJ, Khaw KT, Hart AR (2011) The aetiology of symptomatic gallstones quantification of the effects of obesity, alcohol and serum lipids on risk. Epidemiological and biomarker data from a UK prospective cohort study (EPIC-Norfolk). Eur J Gastroenterol Hepatol 23:733–740

    Article  PubMed  Google Scholar 

  56. Sakorafas GH, Tsiotou AG (2000) Etiology and pathogenesis of acute pancreatitis: current concepts. J Clin Gastroenterol 30:343–356

    Article  PubMed  CAS  Google Scholar 

  57. Venneman NG, Renooij W, Rehfeld JF, VanBerge-Henegouwen GP, Go PM, Broeders IA, van Erpecum KJ (2005) Small gallstones, preserved gallbladder motility, and fast crystallization are associated with pancreatitis. Hepatology 41:738–746

    Article  PubMed  CAS  Google Scholar 

  58. Perides G, Laukkarinen JM, Vassileva G, Steer ML (2010) Biliary acute pancreatitis in mice is mediated by the G-protein-coupled cell surface bile acid receptor Gpbar1. Gastroenterology 138:715–725

    Article  PubMed  CAS  Google Scholar 

  59. Inagaki T, Hoshino M, Hayakawa T, Ohara H, Yamada T, Yamada H, Iida M, Nakazawa T, Ogasawara T, Uchida A, Hasegawa C, Miyaji M, Takeuchi T (1997) Interleukin-6 is a useful marker for early prediction of the severity of acute pancreatitis. Pancreas 14:1–8

    Article  PubMed  CAS  Google Scholar 

  60. Berney T, Gasche Y, Robert J, Jenny A, Mensi N, Grau G, Vermeulen B, Morel P (1999) Serum profiles of interleukin-6, interleukin-8, and interleukin-10 in patients with severe and mild acute pancreatitis. Pancreas 18:371–377

    Article  PubMed  CAS  Google Scholar 

  61. Ueda T, Takeyama Y, Yasuda T, Matsumura N, Sawa H, Nakajima T, Ajiki T, Fujino Y, Suzuki Y, Kuroda Y (2006) Significant elevation of serum interleukin-18 levels in patients with acute pancreatitis. J Gastroenterol 41:158–165

    Article  PubMed  CAS  Google Scholar 

  62. Papachristou GI, Clermont G, Sharma A, Yadav D, Whitcomb DC (2007) Risk and markers of severe acute pancreatitis. Gastroenterol Clin North Am 36:277–296, viii

    Article  PubMed  Google Scholar 

  63. Yuan BS, Zhu RM, Braddock M, Zhang XH, Shi W, Zheng MH (2007) Interleukin-18: a pro-inflammatory cytokine that plays an important role in acute pancreatitis. Expert Opin Ther Targets 11:1261–1271

    Article  PubMed  CAS  Google Scholar 

  64. Shimizu K (2008) Pancreatic stellate cells: molecular mechanism of pancreatic fibrosis. J Gastroenterol Hepatol 23(Suppl 1):S119–S121

    Article  PubMed  CAS  Google Scholar 

  65. Nebiker CA, Frey DM, Hamel CT, Oertli D, Kettelhack C (2009) Early versus delayed cholecystectomy in patients with biliary acute pancreatitis. Surgery 145:260–264

    Article  PubMed  Google Scholar 

  66. Toskes PP (1990) Hyperlipidemic pancreatitis. Gastroenterol Clin North Am 19:783–791

    PubMed  CAS  Google Scholar 

  67. Fortson MR, Freedman SN, Webster PD 3rd (1995) Clinical assessment of hyperlipidemic pancreatitis. Am J Gastroenterol 90:2134–2139

    PubMed  CAS  Google Scholar 

  68. Anderson F, Thomson SR, Clarke DL, Buccimazza I (2009) Dyslipidaemic pancreatitis clinical assessment and analysis of disease severity and outcomes. Pancreatology 9:252–257

    Article  PubMed  CAS  Google Scholar 

  69. Havel RJ (1969) Pathogenesis, differentiation and management of hypertriglyceridemia. Adv Intern Med 15:117–154

    PubMed  CAS  Google Scholar 

  70. Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305

    PubMed  CAS  Google Scholar 

  71. Frischmann M, Bidmon C, Angerer J, Pischetsrieder M (2005) Identification of DNA adducts of methylglyoxal. Chem Res Toxicol 18:1586–1592

    Article  PubMed  CAS  Google Scholar 

  72. Kalea AZ, Schmidt AM, Hudson BI (2009) RAGE: a novel biological and genetic marker for vascular disease. Clin Sci (Lond) 116:621–637

    Article  CAS  Google Scholar 

  73. Lindström O, Tukiainen E, Kylänpää L, Mentula P, Rouhiainen A, Puolakkainen P, Rauvala H, Repo H (2009) Circulating levels of a soluble form of receptor for advanced glycation end products and high-mobility group box chromosomal protein 1 in patients with acute pancreatitis. Pancreas 38:e215–e220

    Article  PubMed  CAS  Google Scholar 

  74. Murata-Kamiya N, Kamiya H, Kaji H, Kasai H (2000) Methylglyoxal induces G:C to C:G and G:C to T:A transversions in the supF gene on a shuttle vector plasmid replicated in mammalian cells. Mutat Res 468:173–182

    Article  PubMed  CAS  Google Scholar 

  75. Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    PubMed  CAS  Google Scholar 

  76. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  PubMed  CAS  Google Scholar 

  77. Li D, Tang H, Hassan MM, Holly EA, Bracci PM, Silverman DT (2011) Diabetes and risk of pancreatic cancer: a pooled analysis of three large case–control studies. Cancer Causes Control 22:189–197

    Article  PubMed  CAS  Google Scholar 

  78. Frossard JL, Lescuyer P, Pastor CM (2009) Experimental evidence of obesity as a risk factor for severe acute pancreatitis. World J Gastroenterol 15:5260–5265

    Article  PubMed  CAS  Google Scholar 

  79. Shin KY, Lee WS, Chung DW, Heo J, Jung MK, Tak WY, Kweon YO, Cho CM (2011) Influence of obesity on the severity and clinical outcome of acute pancreatitis. Gut Liver 5:335–339

    Article  PubMed  Google Scholar 

  80. Papachristou GI, Papachristou DJ, Avula H, Slivka A, Whitcomb DC (2006) Obesity increases the severity of acute pancreatitis: performance of APACHE-O score and correlation with the inflammatory response. Pancreatology 6:279–285

    Article  PubMed  Google Scholar 

  81. Abu Hilal M, Armstrong T (2008) The impact of obesity on the course and outcome of acute pancreatitis. Obes Surg 18:326–328

    Article  PubMed  Google Scholar 

  82. Segersvärd R, Sylván M, Herrington M, Larsson J, Permert J (2001) Obesity increases the severity of acute experimental pancreatitis in the rat. Scand J Gastroenterol 36:658–663

    Article  PubMed  Google Scholar 

  83. Sennello JA, Fayad R, Pini M, Gove ME, Ponemone V, Cabay RJ, Siegmund B, Dinarello CA, Fantuzzi G (2008) Interleukin-18, together with interleukin-12, induces severe acute pancreatitis in obese but not in nonobese leptin-deficient mice. Proc Natl Acad Sci U S A 105:8085–8090

    Article  PubMed  CAS  Google Scholar 

  84. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington, DC

    Google Scholar 

  85. Ghadirian P, Boyle P, Simard A, Baillargeon J, Maisonneuve P, Perret C (1991) Reported family aggregation of pancreatic cancer within a population-based case–control study in the Francophone community in Montreal, Canada. Int J Pancreatol 10:183–196

    PubMed  CAS  Google Scholar 

  86. Lin Y, Tamakoshi A, Hayakawa T, Naruse S, Kitagawa M, Ohno Y (2005) Nutritional factors and risk of pancreatic cancer: a population-based case–control study based on direct interview in Japan. J Gastroenterol 40:297–301

    Article  PubMed  Google Scholar 

  87. Gorry MC, Gabbaizedeh D, Furey W, Gates LK Jr, Preston RA, Aston CE, Zhang Y, Ulrich C, Ehrlich GD, Whitcomb DC (1997) Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology 113:1063–1068

    Article  PubMed  CAS  Google Scholar 

  88. Whitcomb DC (1999) Hereditary pancreatitis: new insights into acute and chronic pancreatitis. Gut 45:317–322

    Article  PubMed  CAS  Google Scholar 

  89. Ferec C, Raguenes O, Salomon R, Roche C, Bernard JP, Guillot M, Quere I, Faure C, Mercier B, Audrezet MP, Guillausseau PJ, Dupont C, Munnich A, Bignon JD, Le Bodic L (1999) Mutations in the cationic trypsinogen gene and evidence for genetic heterogeneity in hereditary pancreatitis. J Med Genet 36:228–232

    PubMed  CAS  Google Scholar 

  90. Charnley RM (2003) Hereditary pancreatitis. World J Gastroenterol 9:1–4

    PubMed  Google Scholar 

  91. Comfort MW, Steinberg AG (1952) Pedigree of a family with hereditary chronic relapsing pancreatitis. Gastroenterology 21:54–63

    PubMed  CAS  Google Scholar 

  92. Whitcomb DC, Preston RA, Aston CE, Sossenheimer MJ, Barua PS, Zhang Y, Wong-Chong A, White GJ, Wood PG, Gates LK Jr, Ulrich C, Martin SP, Post JC, Ehrlich GD (1996) A gene for hereditary pancreatitis maps to chromosome 7q35. Gastroenterology 110:1975–1980

    Article  PubMed  CAS  Google Scholar 

  93. Pandya A, Blanton SH, Landa B, Javaheri R, Melvin E, Nance WE, Markello T (1996) Linkage studies in a large kindred with hereditary pancreatitis confirms mapping of the gene to a 16-cM region on 7q. Genomics 38:227–230

    Article  PubMed  CAS  Google Scholar 

  94. Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, Martin SP, Gates LK Jr, Amann ST, Toskes PP, Liddle R, McGrath K, Uomo G, Post JC, Ehrlich GD (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145

    Article  PubMed  CAS  Google Scholar 

  95. Teich N, Mossner J, Keim V (1999) Screening for mutations of the cationic trypsinogen gene: are they of relevance in chronic alcoholic pancreatitis? Gut 44:413–416

    Article  PubMed  CAS  Google Scholar 

  96. Scheele G, Kern H (1986) The exocrine pancreas. In: Desnuelle P, Sjöström H, Norén O (eds) Molecular and cellular basis of digestion. Elsevier, Amsterdam, pp 173–194

    Google Scholar 

  97. Whitcomb DC, Applebaum S, Martin SP (1999) Hereditary pancreatitis and pancreatic carcinoma. Ann N Y Acad Sci 880:201–209

    Article  PubMed  CAS  Google Scholar 

  98. Hengstler JG, Bauer A, Wolf HK, Bulitta CJ, Tanner B, Oesch F, Gebhard S, Boettger T (2000) Mutation analysis of the cationic trypsinogen gene in patients with pancreatic cancer. Anticancer Res 20:2967–2974

    PubMed  CAS  Google Scholar 

  99. Miszczuk-Jamska B, Merten M, Guy-Crotte O, Amouric M, Clemente F, Schoumacher RA, Figarella C (1991) Characterization of trypsinogens 1 and 2 in two human pancreatic adenocarcinoma cell lines; CFPAC-1 and CAPAN-1. FEBS Lett 294:175–178

    Article  PubMed  CAS  Google Scholar 

  100. Ohta T, Terada T, Nagakawa T, Tajima H, Itoh H, Fonseca L, Miyazaki I (1994) Pancreatic trypsinogen and cathepsin B in human pancreatic carcinomas and associated metastatic lesions. Br J Cancer 69:152–156

    Article  PubMed  CAS  Google Scholar 

  101. Tajima H, Ohta T, Elnemr A, Yasui T, Kitagawa H, Fushida S, Kayahara M, Miwa K, Wakayama T, Iseki S, Yokoyama S (2001) Enhanced invasiveness of pancreatic adenocarcinoma cells stably transfected with cationic trypsinogen cDNA. Int J Cancer 94:699–704

    Article  PubMed  CAS  Google Scholar 

  102. Gao J, Zhu F, Lv S, Li Z, Ling Z, Gong Y, Jie C, Ma L (2010) Identification of pancreatic juice proteins as biomarkers of pancreatic cancer. Oncol Rep 23:1683–1692

    PubMed  CAS  Google Scholar 

  103. Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, Landt O, Becker M (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25:213–216

    Article  PubMed  CAS  Google Scholar 

  104. Király O, Wartmann T, Sahin-Tóth M (2007) Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut 56:1433–1438

    Article  PubMed  CAS  Google Scholar 

  105. Kuwata K, Hirota M, Shimizu H, Nakae M, Nishihara S, Takimoto A, Mitsushima K, Kikuchi N, Endo K, Inoue M, Ogawa M (2002) Functional analysis of recombinant pancreatic secretory trypsin inhibitor protein with amino-acid substitution. J Gastroenterol 37:928–934

    Article  PubMed  CAS  Google Scholar 

  106. Ohmuraya M, Hirota M, Araki M, Mizushima N, Matsui M, Mizumoto T, Haruna K, Kume S, Takeya M, Ogawa M, Araki K, Yamamura K (2005) Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice. Gastroenterology 129:696–705

    PubMed  CAS  Google Scholar 

  107. Ohmuraya M, Hirota M, Araki K, Baba H, Yamamura K (2006) Enhanced trypsin activity in pancreatic acinar cells deficient for serine protease inhibitor kazal type 3. Pancreas 33:104–106

    Article  PubMed  Google Scholar 

  108. Pfützer RH, Barmada MM, Brunskill AP, Finch R, Hart PS, Neoptolemos J, Furey WF, Whitcomb DC (2000) SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology 119:615–623

    Article  PubMed  Google Scholar 

  109. Threadgold J, Greenhalf W, Ellis I, Howes N, Lerch MM, Simon P, Jansen J, Charnley R, Laugier R, Frulloni L, Oláh A, Delhaye M, Ihse I, Schaffalitzky de Muckadell OB, Andrén-Sandberg A, Imrie CW, Martinek J, Gress TM, Mountford R, Whitcomb D, Neoptolemos JP (2002) The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut 50:675–681

    Article  PubMed  CAS  Google Scholar 

  110. Novis BH, Young GO, Bank S, Marks IN (1975) Chronic pancreatitis and alpha-1-antitrypsin. Lancet 2:748–749

    Article  PubMed  CAS  Google Scholar 

  111. Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, Braganza J (1998) Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 339:645–652

    Article  PubMed  CAS  Google Scholar 

  112. Cohn JA (2003) Motion—genetic testing is useful in the diagnosis of nonhereditary pancreatic conditions: arguments against the motion. Can J Gastroenterol 17:53–55

    PubMed  Google Scholar 

  113. Kamp DW, Shacter E, Weitzman SA (2011) Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park) 25:400–410, 413

    Google Scholar 

  114. Ronai ZA, Gradia S, Peterson LA, Hecht SS (1993) G to A transitions and G to T transversions in codon 12 of the Ki-ras oncogene isolated from mouse lung tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and related DNA methylating and pyridyloxobutylating agents. Carcinogenesis 14:2419–2422

    Article  PubMed  CAS  Google Scholar 

  115. Popović Hadzija M, Korolija M, Jakić Razumović J, Pavković P, Hadzija M, Kapitanović S (2007) K-ras and Dpc4 mutations in chronic pancreatitis: case series. Croat Med J 48:218–224

    PubMed  Google Scholar 

  116. Löhr M, Klöppel G, Maisonneuve P, Lowenfels AB, Lüttges J (2005) Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 7:17–23

    Article  PubMed  CAS  Google Scholar 

  117. Arvanitakis M, Van Laethem JL, Parma J, De Maertelaer V, Delhaye M, Devière J (2004) Predictive factors for pancreatic cancer in patients with chronic pancreatitis in association with K-ras gene mutation. Endoscopy 36:535–542

    Article  PubMed  CAS  Google Scholar 

  118. Kamisawa T, Takuma K, Tabata T, Egawa N, Yamaguchi T (2011) Long-term follow-up of chronic pancreatitis patients with K-ras mutation in the pancreatic juice. Hepatogastroenterology 58:174–176

    PubMed  Google Scholar 

  119. Liu K, Qin CK, Wang ZY, Liu SX, Cui XP, Zhang DY (2012) Expression of tumor necrosis factor-alpha-induced protein 8 in pancreas tissues and its correlation with epithelial growth factor receptor levels. Asian Pac J Cancer Prev 13:847–850

    Article  PubMed  Google Scholar 

  120. Korc M, Friess H, Yamanaka Y, Kobrin MS, Buchler M, Beger HG (1994) Chronic pancreatitis is associated with increased concentrations of epidermal growth factor receptor, transforming growth factor alpha, and phospholipase C gamma. Gut 35:1468–1473

    Article  PubMed  CAS  Google Scholar 

  121. Lakshmikesari A, Radhakrishna R, Bhanumathi A, Ravi D, Srinivas G, Nair M, Pillai M (1996) Expression of epidermal and transforming growth factors in pancreatic cancer. Oncol Rep 3:963–966

    PubMed  CAS  Google Scholar 

  122. Konturek PC, Dembínski A, Warzecha Z, Ceranowicz P, Konturek SJ, Stachura J, Hahn EG (1997) Expression of transforming growth factor-beta 1 and epidermal growth factor in caerulein-induced pancreatitis in rat. J Physiol Pharmacol 48:59–72

    PubMed  CAS  Google Scholar 

  123. Zhu Z, Kleeff J, Friess H, Wang L, Zimmermann A, Yarden Y, Büchler MW, Korc M (2000) Epiregulin is up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem Biophys Res Commun 273:1019–1024

    Article  PubMed  CAS  Google Scholar 

  124. Wang F, Xu L, Guo C, Ke A, Hu G, Xu X, Mo W, Yang L, Huang Y, He S, Wang X (2011) Identification of RegIV as a novel GLI1 target gene in human pancreatic cancer. PLoS One 6:e18434

    Article  PubMed  CAS  Google Scholar 

  125. Jin CX, Hayakawa T, Ko SB, Ishiguro H, Kitagawa M (2011) Pancreatic stone protein/regenerating protein family in pancreatic and gastrointestinal diseases. Intern Med 50:1507–1516

    Article  PubMed  CAS  Google Scholar 

  126. Zhou L, Zhang R, Wang L, Shen S, Okamoto H, Sugawara A, Xia L, Wang X, Noguchi N, Yoshikawa T, Uruno A, Yao W, Yuan Y (2010) Upregulation of REG Ialpha accelerates tumor progression in pancreatic cancer with diabetes. Int J Cancer 127:1795–1803

    Article  PubMed  CAS  Google Scholar 

  127. Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F, Chan DW, Canto M, Lillemoe KD, Cameron JL, Yeo CJ, Hruban RH, Goggins M (2002) Identification of hepatocarcinoma–intestine–pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 62:1868–1875

    PubMed  CAS  Google Scholar 

  128. Parikh A, Stephan AF, Tzanakakis ES (2012) Regenerating proteins and their expression, regulation and signaling. Biomol Concepts 3:57–70

    Article  PubMed  Google Scholar 

  129. Menke A, Yamaguchi H, Giehl K, Adler G (1999) Hepatocyte growth factor and fibroblast growth factor 2 are overexpressed after cerulein-induced acute pancreatitis. Pancreas 18:28–33

    Article  PubMed  CAS  Google Scholar 

  130. Banerjee SK, Zoubine MN, Mullick M, Weston AP, Cherian R, Campbell DR (2000) Tumor angiogenesis in chronic pancreatitis and pancreatic adenocarcinoma: impact of K-ras mutations. Pancreas 20:248–255

    Article  PubMed  CAS  Google Scholar 

  131. Yamazaki K, Nagao T, Yamaguchi T, Saisho H, Kondo Y (1997) Expression of basic fibroblast growth factor (FGF-2)-associated with tumour proliferation in human pancreatic carcinoma. Virchows Arch 431:95–101

    Article  PubMed  CAS  Google Scholar 

  132. Kuehn R, Lelkes PI, Bloechle C, Niendorf A, Izbicki JR (1999) Angiogenesis, angiogenic growth factors, and cell adhesion molecules are upregulated in chronic pancreatic diseases: angiogenesis in chronic pancreatitis and in pancreatic cancer. Pancreas 18:96–103

    Article  PubMed  CAS  Google Scholar 

  133. Berindan-Neagoe I, Burz C, Balacescu O, Balacescu L, Seicean A, Cristea V, Irimie A (2011) Molecular angiogenesis profile as a tool to discriminate chronic pancreatitis (CP) from pancreatic cancer (PC). Pancreas 40:482–483

    Article  PubMed  Google Scholar 

  134. Arafat HA, Gong Q, Chipitsyna G, Rizvi A, Saa CT, Yeo CJ (2007) Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J Am Coll Surg 204:996–1005, discussion 1005-1006

    Article  PubMed  Google Scholar 

  135. Blaine SA, Ray KC, Branch KM, Robinson PS, Whitehead RH, Means AL (2009) Epidermal growth factor receptor regulates pancreatic fibrosis. Am J Physiol Gastrointest Liver Physiol 297:G434–G441

    Article  PubMed  CAS  Google Scholar 

  136. Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T (2008) Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 295:G709–G717

    Article  PubMed  CAS  Google Scholar 

  137. Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13:4769–4776

    Article  PubMed  CAS  Google Scholar 

  138. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK, Vonderheide RH, Leach SD, Stanger BZ (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148:349–361

    Article  PubMed  CAS  Google Scholar 

  139. Armstrong AW, Armstrong EJ, Fuller EN, Sockolov ME, Voyles SV (2011) Smoking and pathogenesis of psoriasis: a review of oxidative, inflammatory and genetic mechanisms. Br J Dermatol 165:1162–1168

    Article  PubMed  CAS  Google Scholar 

  140. Becker S, Dossus L, Kaaks R (2009) Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch Physiol Biochem 115:86–96

    Article  PubMed  CAS  Google Scholar 

  141. Gago-Dominguez M, Castelao JE, Pike MC, Sevanian A, Haile RW (2005) Role of lipid peroxidation in the epidemiology and prevention of breast cancer. Cancer Epidemiol Biomarkers Prev 14:2829–2839

    Article  PubMed  CAS  Google Scholar 

  142. Milaeva ER (2011) Metal-based antioxidants—potential therapeutic candidates for prevention the oxidative stress-related carcinogenesis: mini-review. Curr Top Med Chem 11:2703–2713

    Article  PubMed  CAS  Google Scholar 

  143. Katiyar SK, Meeran SM (2007) Obesity increases the risk of UV radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling. Free Radic Biol Med 42:299–310

    Article  PubMed  CAS  Google Scholar 

  144. Dabrowski A, Gabryelewicz A, Wereszczyńska-Siemiatkowska U, Chyczewski L (1988) Oxygen-derived free radicals in cerulein-induced acute pancreatitis. Scand J Gastroenterol 23:1245–1249

    Article  PubMed  CAS  Google Scholar 

  145. Nonaka A, Manabe T, Tamura K, Asano N, Imanishi K, Tobe T (1989) Changes of xanthine oxidase, lipid peroxide and superoxide dismutase in mouse acute pancreatitis. Digestion 43:41–46

    Article  PubMed  CAS  Google Scholar 

  146. Schoenberg MH, Büchler M, Gaspar M, Stinner A, Younes M, Melzner I, Bültmann B, Beger HG (1990) Oxygen free radicals in acute pancreatitis of the rat. Gut 31:1138–1143

    Article  PubMed  CAS  Google Scholar 

  147. Schoenberg MH, Büchler M, Pietrzyk C, Uhl W, Birk D, Eisele S, Marzinzig M, Beger HG (1995) Lipid peroxidation and glutathione metabolism in chronic pancreatitis. Pancreas 10:36–43

    Article  PubMed  CAS  Google Scholar 

  148. Ganesh Pai C, Sreejayan RMN (1999) Evidence for oxidant stress in chronic pancreatitis. Indian J Gastroenterol 18:156–157

    PubMed  CAS  Google Scholar 

  149. Basso D, Panozzo MP, Fabris C, del Favero G, Meggiato T, Fogar P, Meani A, Faggian D, Plebani M, Burlina A, Naccarato R (1990) Oxygen derived free radicals in patients with chronic pancreatic and other digestive diseases. J Clin Pathol 43:403–405

    Article  PubMed  CAS  Google Scholar 

  150. Baumgart S, Ellenrieder V, Fernandez-Zapico ME (2011) Oncogenic transcription factors: cornerstones of inflammation-linked pancreatic carcinogenesis. Gut

  151. Curti ML, Jacob P, Borges MC, Rogero MM, Ferreira SR (2011) Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. J Obes 2011:497401

    PubMed  Google Scholar 

  152. Miron N, Miron MM, Milea VG, Cristea V (2010) Proinflammatory cytokines: an insight into pancreatic oncogenesis. Roum Arch Microbiol Immunol 69:183–189

    PubMed  CAS  Google Scholar 

  153. Nieto-Vazquez I, Fernández-Veledo S, Krämer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M (2008) Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem 114:183–194

    Article  PubMed  CAS  Google Scholar 

  154. Yang YM, Ramadani M, Huang YT (2003) Overexpression of caspase-1 in adenocarcinoma of pancreas and chronic pancreatitis. World J Gastroenterol 9:2828–2831

    PubMed  CAS  Google Scholar 

  155. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  PubMed  CAS  Google Scholar 

  156. Burke SJ, Collier JJ (2011) The gene encoding cyclooxygenase-2 is regulated by IL-1beta and prostaglandins in 832/13 rat insulinoma cells. Cell Immunol 271:379–384

    Article  PubMed  CAS  Google Scholar 

  157. Verma G, Bhatia H, Datta M (2012) Gene expression profiling and pathway analysis identify the integrin signaling pathway to be altered by IL-1beta in human pancreatic cancer cells: role of JNK. Cancer Lett 320:86–95

    Article  PubMed  CAS  Google Scholar 

  158. Pini M, Rhodes DH, Castellanos KJ, Hall AR, Cabay RJ, Chennuri R, Grady EF, Fantuzzi G (2012) Role of IL-6 in the resolution of pancreatitis in obese mice. J Leukoc Biol 91:957–966

    Article  PubMed  CAS  Google Scholar 

  159. Achyut BR, Yang L (2011) Transforming growth factor-beta in the gastrointestinal and hepatic tumor microenvironment. Gastroenterology 141:1167–1178

    Article  PubMed  CAS  Google Scholar 

  160. Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21:49–59

    Article  PubMed  CAS  Google Scholar 

  161. Schmidt HH, Walter U (1994) NO at work. Cell 78:919–925

    Article  PubMed  CAS  Google Scholar 

  162. Jaiswal M, LaRusso NF, Gores GJ (2001) Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol 281:G626–G634

    PubMed  CAS  Google Scholar 

  163. Yang GY, Taboada S, Liao J (2009) Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 512:119–156

    Article  PubMed  CAS  Google Scholar 

  164. Kasper HU, Wolf H, Drebber U, Wolf HK, Kern MA (2004) Expression of inducible nitric oxide synthase and cyclooxygenase-2 in pancreatic adenocarcinoma: correlation with microvessel density. World J Gastroenterol 10:1918–1922

    PubMed  CAS  Google Scholar 

  165. Tanjoh K, Tomita R, Izumi T, Kinoshita K, Kawahara Y, Moriya T, Utagawa A (2007) The expression of the inducible nitric oxide synthase messenger RNA on monocytes in severe acute pancreatitis. Hepatogastroenterology 54:927–931

    PubMed  CAS  Google Scholar 

  166. Mikawa K, Kodama SI, Nishina K, Obara H (2001) ONO-1714, a new inducible nitric oxide synthase inhibitor, attenuates diaphragmatic dysfunction associated with cerulein-induced pancreatitis in rats. Crit Care Med 29:1215–1221

    Article  PubMed  CAS  Google Scholar 

  167. Takahashi M, Kitahashi T, Ishigamori R, Mutoh M, Komiya M, Sato H, Kamanaka Y, Naka M, Maruyama T, Sugimura T, Wakabayashi K (2008) Increased expression of inducible nitric oxide synthase (iNOS) in N-nitrosobis(2-oxopropyl)amine-induced hamster pancreatic carcinogenesis and prevention of cancer development by ONO-1714, an iNOS inhibitor. Carcinogenesis 29:1608–1613

    Article  PubMed  CAS  Google Scholar 

  168. Takahashi M, Mutoh M, Shoji Y, Kamanaka Y, Naka M, Maruyama T, Sugimura T, Wakabayashi K (2003) Transfection of K-rasAsp12 cDNA markedly elevates IL-1beta- and lipopolysaccharide-mediated inducible nitric oxide synthase expression in rat intestinal epithelial cells. Oncogene 22:7667–7676

    Article  PubMed  CAS  Google Scholar 

  169. Welsch T, Kleeff J, Friess H (2007) Molecular pathogenesis of pancreatic cancer: advances and challenges. Curr Mol Med 7:504–521

    Article  PubMed  CAS  Google Scholar 

  170. Cerny WL, Mangold KA, Scarpelli DG (1992) K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res 52:4507–4513

    PubMed  CAS  Google Scholar 

  171. Agarwal S, Reddy GV, Reddanna P (2009) Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev Clin Immunol 5:145–165

    Article  PubMed  CAS  Google Scholar 

  172. Sheng H, Shao J, Dubois RN (2001) K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1. Cancer Res 61:2670–2675

    PubMed  CAS  Google Scholar 

  173. Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M, Miura K, Harris CC (2003) Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63:728–734

    PubMed  CAS  Google Scholar 

  174. Song AM, Bhagat L, Singh VP, Van Acker GG, Steer ML, Saluja AK (2002) Inhibition of cyclooxygenase-2 ameliorates the severity of pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 283:G1166–G1174

    PubMed  CAS  Google Scholar 

  175. Seo SW, Jung WS, Piao TG, Hong SH, Yun KJ, Park RK, Shin MK, Song HJ, Park SJ (2007) Selective cyclooxygenase-2 inhibitor ameliorates cholecystokinin-octapeptide-induced acute pancreatitis in rats. World J Gastroenterol 13:2298–2304

    PubMed  CAS  Google Scholar 

  176. Koliopanos A, Friess H, Kleeff J, Roggo A, Zimmermann A, Büchler MW (2001) Cyclooxygenase 2 expression in chronic pancreatitis: correlation with stage of the disease and diabetes mellitus. Digestion 64:240–247

    Article  PubMed  CAS  Google Scholar 

  177. Schlosser W, Schlosser S, Ramadani M, Gansauge F, Gansauge S, Beger HG (2002) Cyclooxygenase-2 is overexpressed in chronic pancreatitis. Pancreas 25:26–30

    Article  PubMed  Google Scholar 

  178. Foitzik T, Hotz HG, Hotz B, Wittig F, Buhr HJ (2003) Selective inhibition of cyclooxygenase-2 (COX-2) reduces prostaglandin E2 production and attenuates systemic disease sequelae in experimental pancreatitis. Hepatogastroenterology 50:1159–1162

    PubMed  CAS  Google Scholar 

  179. Crowell PL, Schmidt CM, Yip-Schneider MT, Savage JJ, Hertzler DA 2nd, Cummings WO (2006) Cyclooxygenase-2 expression in hamster and human pancreatic neoplasia. Neoplasia 8:437–445

    Article  PubMed  CAS  Google Scholar 

  180. Nunẽz C, Cansino JR, Bethencourt F, Pérez-Utrilla M, Fraile B, Martínez-Onsurbe P, Olmedilla G, Paniagua R, Royuela M (2008) TNF/IL-1/NIK/NF-kappa B transduction pathway: a comparative study in normal and pathological human prostate (benign hyperplasia and carcinoma). Histopathology 53:166–176

    Article  PubMed  Google Scholar 

  181. Fukuda A, Wang SC, Morris JP, Folias AE, Liou A, Kim GE, Akira S, Boucher KM, Firpo MA, Mulvihill SJ, Hebrok M (2011) Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19:441–455

    Article  PubMed  CAS  Google Scholar 

  182. Yamamoto H, Itoh F, Iku S, Adachi Y, Fukushima H, Sasaki S, Mukaiya M, Hirata K, Imai K (2001) Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: clinicopathologic and prognostic significance of matrilysin expression. J Clin Oncol 19:1118–1127

    PubMed  CAS  Google Scholar 

  183. Crawford HC, Scoggins CR, Washington MK, Matrisian LM, Leach SD (2002) Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest 109:1437–1444

    PubMed  CAS  Google Scholar 

  184. Fukushima H, Yamamoto H, Itoh F, Nakamura H, Min Y, Horiuchi S, Iku S, Sasaki S, Imai K (2001) Association of matrilysin mRNA expression with K-ras mutations and progression in pancreatic ductal adenocarcinomas. Carcinogenesis 22:1049–1052

    Article  PubMed  CAS  Google Scholar 

  185. Jones LE, Humphreys MJ, Campbell F, Neoptolemos JP, Boyd MT (2004) Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 10:2832–2845

    Article  PubMed  CAS  Google Scholar 

  186. Apte MV, Wilson JS (2003) Alcohol-induced pancreatic injury. Best Pract Res Clin Gastroenterol 17:593–612

    Article  PubMed  CAS  Google Scholar 

  187. Haber PS, Apte MV, Moran C, Applegate TL, Pirola RC, Korsten MA, McCaughan GW, Wilson JS (2004) Non-oxidative metabolism of ethanol by rat pancreatic acini. Pancreatology 4:82–89

    Article  PubMed  CAS  Google Scholar 

  188. Norton ID, Apte MV, Lux O, Haber PS, Pirola RC, Wilson JS (1998) Chronic ethanol administration causes oxidative stress in the rat pancreas. J Lab Clin Med 131:442–446

    Article  PubMed  CAS  Google Scholar 

  189. Tsukamoto H, Towner SJ, Yu GS, French SW (1988) Potentiation of ethanol-induced pancreatic injury by dietary fat. Induction of chronic pancreatitis by alcohol in rats. Am J Pathol 131:246–257

    PubMed  CAS  Google Scholar 

  190. Gukovsky I, Lugea A, Shahsahebi M, Cheng JH, Hong PP, Jung YJ, Deng QG, French BA, Lungo W, French SW, Tsukamoto H, Pandol SJ (2008) A rat model reproducing key pathological responses of alcoholic chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 294:G68–G79

    Article  PubMed  CAS  Google Scholar 

  191. Willemer S, Elsässer HP, Adler G (1992) Hormone-induced pancreatitis. Eur Surg Res 24(Suppl 1):29–39

    Article  PubMed  Google Scholar 

  192. Yoo BM, Oh TY, Kim YB, Yeo M, Lee JS, Surh YJ, Ahn BO, Kim WH, Sohn S, Kim JH, Hahm KB (2005) Novel antioxidant ameliorates the fibrosis and inflammation of cerulein-induced chronic pancreatitis in a mouse model. Pancreatology 5:165–176

    Article  PubMed  CAS  Google Scholar 

  193. Banerjee AK, Galloway SW, Kingsnorth AN (1994) Experimental models of acute pancreatitis. Br J Surg 81:1096–1103

    Article  PubMed  CAS  Google Scholar 

  194. Wang J, Ohmuraya M, Suyama K, Hirota M, Ozaki N, Baba H, Nakagata N, Araki K, Yamamura K (2010) Relationship of strain-dependent susceptibility to experimentally induced acute pancreatitis with regulation of Prss1 and Spink3 expression. Lab Invest 90:654–664

    Article  PubMed  CAS  Google Scholar 

  195. Lee JH, An CS, Yun BS, Kang KS, Lee YA, Won SM, Gwag BJ, Cho SI, Hahm KB (2012) Prevention effects of ND-07, a novel drug candidate with a potent antioxidative action and anti-inflammatory action, in animal models of severe acute pancreatitis. Eur J Pharmacol 687:28–38

    Article  PubMed  CAS  Google Scholar 

  196. Lombardi B (1971) Effects of choline deficiency on rat hepatocytes. Fed Proc 30:139–142

    PubMed  CAS  Google Scholar 

  197. Chen SH, Estes LW, Lombardi B (1972) Lecithin depletion in hepatic microsomal membranes of rats fed on a choline-deficient diet. Exp Mol Pathol 17:176–186

    Article  PubMed  CAS  Google Scholar 

  198. Leelavathi DE, Katyal SL, Lombardi B (1974) Lecithin depletion in liver mitochondria of rats fed a choline-deficient diet. Effect on beta-hydroxybutyrate dehydrogenase. Life Sci 14:1203–1210

    Article  PubMed  CAS  Google Scholar 

  199. Gilliland L, Steer ML (1980) Effects of ethionine on digestive enzyme synthesis and discharge by mouse pancreas. Am J Physiol 239:G418–G426

    PubMed  CAS  Google Scholar 

  200. Ida S, Ohmuraya M, Hirota M, Ozaki N, Hiramatsu S, Uehara H, Takamori H, Araki K, Baba H, Yamamura K (2010) Chronic pancreatitis in mice by treatment with choline-deficient ethionine-supplemented diet. Exp Anim 59:421–429

    Article  PubMed  CAS  Google Scholar 

  201. Yan MX, Li YQ, Meng M, Ren HB, Kou Y (2006) Long-term high-fat diet induces pancreatic injuries via pancreatic microcirculatory disturbances and oxidative stress in rats with hyperlipidemia. Biochem Biophys Res Commun 347:192–199

    Article  PubMed  CAS  Google Scholar 

  202. Pini M, Sennello JA, Cabay RJ, Fantuzzi G (2010) Effect of diet-induced obesity on acute pancreatitis induced by administration of interleukin-12 plus interleukin-18 in mice. Obesity (Silver Spring) 18:476–481

    Article  CAS  Google Scholar 

  203. Araki H, Nishihara T, Matsuda M, Fukuhara A, Kihara S, Funahashi T, Kataoka TR, Kamada Y, Kiyohara T, Tamura S, Hayashi N, Shimomura I (2008) Adiponectin plays a protective role in caerulein-induced acute pancreatitis in mice fed a high-fat diet. Gut 57:1431–1440

    Article  PubMed  CAS  Google Scholar 

  204. Sherwood NE, Jeffery RW, French SA, Hannan PJ, Murray DM (2000) Predictors of weight gain in the Pound of Prevention study. Int J Obes Relat Metab Disord 24:395–403

    Article  PubMed  CAS  Google Scholar 

  205. Martínez J, Johnson CD, Sánchez-Payá J, de Madaria E, Robles-Diaz G, Pérez-Mateo M (2006) Obesity is a definitive risk factor of severity and mortality in acute pancreatitis: an updated meta-analysis. Pancreatology 6:206–209

    Article  PubMed  Google Scholar 

  206. Guerra C, Schuhmacher AJ, Canãmero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  PubMed  CAS  Google Scholar 

  207. Duan RD, Zheng CF, Guan KL, Williams JA (1995) Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini. Am J Physiol 268:G1060–G1065

    PubMed  CAS  Google Scholar 

  208. Siveke JT, Einwächter H, Sipos B, Lubeseder-Martellato C, Klöppel G, Schmid RM (2007) Concomitant pancreatic activation of Kras (G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12:266–279

    Article  PubMed  CAS  Google Scholar 

  209. Ji B, Tsou L, Wang H, Gaiser S, Chang DZ, Daniluk J, Bi Y, Grote T, Longnecker DS, Logsdon CD (2009) Ras activity levels control the development of pancreatic diseases. Gastroenterology 137:1072–1082

    Article  PubMed  CAS  Google Scholar 

  210. Collins MA, Bednar F, Zhang Y, Brisset JC, Galbán S, Galbán CJ, Rakshit S, Flannagan KS, Adsay NV, Pasca di Magliano M (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–653

    Article  PubMed  CAS  Google Scholar 

  211. Takeuchi Y, Takahashi M, Sakano K, Mutoh M, Niho N, Yamamoto M, Sato H, Sugimura T, Wakabayashi K (2007) Suppression of N-nitrosobis(2-oxopropyl)amine-induced pancreatic carcinogenesis in hamsters by pioglitazone, a ligand of peroxisome proliferator-activated receptor gamma. Carcinogenesis 28:1692–1696

    Article  PubMed  CAS  Google Scholar 

  212. Pour P, Althoff J, Krüger FW, Mohr U (1977) A potent pancreatic carcinogen in Syrian hamsters: N-nitrosobis(2-oxopropyl)amine. J Natl Cancer Inst 58:1449–1453

    PubMed  CAS  Google Scholar 

  213. Fujii H, Egami H, Chaney W, Pour P, Pelling J (1990) Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nitrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point-mutated codon 12. Mol Carcinog 3:296–301

    Article  PubMed  CAS  Google Scholar 

  214. Tsujiuchi T, Sasaki Y, Kubozoe T, Konishi Y, Tsutsumi M (2003) Alterations in the Fhit gene in pancreatic duct adenocarcinomas induced by N-nitrosobis(2-oxopropyl)amine in hamsters. Mol Carcinog 36:60–66

    Article  PubMed  CAS  Google Scholar 

  215. Grünewald K, Lyons J, Fröhlich A, Feichtinger H, Weger RA, Schwab G, Janssen JW, Bartram CR (1989) High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 43:1037–1041

    Article  PubMed  Google Scholar 

  216. Sorio C, Baron A, Orlandini S, Zamboni G, Pederzoli P, Huebner K, Scarpa A (1999) The FHIT gene is expressed in pancreatic ductular cells and is altered in pancreatic cancers. Cancer Res 59:1308–1314

    PubMed  CAS  Google Scholar 

  217. Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32

    Article  PubMed  CAS  Google Scholar 

  218. Hanaoka M, Shimizu K, Shigemura M, Kato A, Fujii H, Honoki K, Tsujiuchi T (2005) Cloning of the hamster p16 gene 5′ upstream region and its aberrant methylation patterns in pancreatic cancer. Biochem Biophys Res Commun 333:1249–1253

    Article  PubMed  CAS  Google Scholar 

  219. Jimenez RE, Z'Graggen K, Hartwig W, Graeme-Cook F, Warshaw AL, Fernandez-del Castillo C (1999) Immunohistochemical characterization of pancreatic tumors induced by dimethylbenzanthracene in rats. Am J Pathol 154:1223–1229

    Article  PubMed  CAS  Google Scholar 

  220. Osvaldt AB, Wendt LR, Bersch VP, Backes AN, de Cássia ASR, Edelweiss MI, Rohde L (2006) Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice. Surgery 140:803–809

    Article  PubMed  Google Scholar 

  221. Z'Graggen K, Warshaw AL, Werner J, Graeme-Cook F, Jimenez RE, Fernandez-Del Castillo C (2001) Promoting effect of a high-fat/high-protein diet in DMBA-induced ductal pancreatic cancer in rats. Ann Surg 233:688–695

    Article  PubMed  Google Scholar 

  222. Shimosegawa T, Kume K, Satoh K (2009) Chronic pancreatitis and pancreatic cancer: prediction and mechanism. Clin Gastroenterol Hepatol 7:S23–S28

    Article  PubMed  CAS  Google Scholar 

  223. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  PubMed  CAS  Google Scholar 

  224. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554

    Article  PubMed  CAS  Google Scholar 

  225. Wang X, Gao J, Ren Y, Gu J, Du Y, Chen J, Jin Z, Zhan X, Li Z, Huang H, Lv S, Gong Y (2011) Detection of KRAS gene mutations in endoscopic ultrasound-guided fine-needle aspiration biopsy for improving pancreatic cancer diagnosis. Am J Gastroenterol 106:2104–2111

    Article  PubMed  CAS  Google Scholar 

  226. Terhune PG, Phifer DM, Tosteson TD, Longnecker DS (1998) K-ras mutation in focal proliferative lesions of human pancreas. Cancer Epidemiol Biomarkers Prev 7:515–521

    PubMed  CAS  Google Scholar 

  227. Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, Furth EE, Furukawa T, Klein A, Klimstra DS, Kloppel G, Lauwers GY, Longnecker DS, Luttges J, Maitra A, Offerhaus GJ, Pérez-Gallego L, Redston M, Tuveson DA (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66:95–106

    Article  PubMed  CAS  Google Scholar 

  228. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    Article  PubMed  CAS  Google Scholar 

  229. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  PubMed  CAS  Google Scholar 

  230. Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, Grizzle WE, Klug CA (2007) Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 67:8121–8130

    Article  PubMed  CAS  Google Scholar 

  231. Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160

    Article  PubMed  CAS  Google Scholar 

  232. Schüller HM, Jorquera R, Reichert A, Castonguay A (1993) Transplacental induction of pancreas tumors in hamsters by ethanol and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 53:2498–2501

    PubMed  Google Scholar 

  233. Hoffmann D, Hecht SS (1985) Nicotine-derived N-nitrosamines and tobacco-related cancer: current status and future directions. Cancer Res 45:935–944

    PubMed  CAS  Google Scholar 

  234. Correa E, Joshi PA, Castonguay A, Schüller HM (1990) The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is an active transplacental carcinogen in Syrian golden hamsters. Cancer Res 50:3435–3438

    PubMed  CAS  Google Scholar 

  235. Wendt LR, Osvaldt AB, Bersch VP, Schumacher Rde C, Edelweiss MI, Rohde L (2007) Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice: effects of alcohol and caffeine. Acta Cir Bras 22:202–209

    Article  PubMed  Google Scholar 

  236. Nishikawa A, Furukawa F, Imazawa T, Yoshimura H, Mitsumori K, Takahashi M (1992) Effects of caffeine, nicotine, ethanol and sodium selenite on pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl)amine. Carcinogenesis 13:1379–1382

    Article  PubMed  CAS  Google Scholar 

  237. Tweedie JH, Reber HA, Pour PM, Pounder DM (1981) Potective effect of ethanol on the development of pancreatic cancer. Surg Forum 32:222–224

    CAS  Google Scholar 

  238. Howatson AG, Carter DC (1985) Pancreatic carcinogenesis-enhancement by cholecystokinin in the hamster-nitrosamine model. Br J Cancer 51:107–114

    Article  PubMed  CAS  Google Scholar 

  239. Carrière C, Young AL, Gunn JR, Longnecker DS, Korc M (2009) Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem Biophys Res Commun 382:561–565

    Article  PubMed  CAS  Google Scholar 

  240. Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernández-Porras I, Canãmero M, Rodriguez-Justo M, Serrano M, Barbacid M (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19:728–739

    Article  PubMed  CAS  Google Scholar 

  241. Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J (2005) Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128:728–741

    Article  PubMed  CAS  Google Scholar 

  242. Fendrich V, Esni F, Garay MV, Feldmann G, Habbe N, Jensen JN, Dor Y, Stoffers D, Jensen J, Leach SD, Maitra A (2008) Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology 135:621–631

    Article  PubMed  CAS  Google Scholar 

  243. Siveke JT, Lubeseder-Martellato C, Lee M, Mazur PK, Nakhai H, Radtke F, Schmid RM (2008) Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology 134:544–555

    Article  PubMed  CAS  Google Scholar 

  244. De La OJ, Murtaugh LC (2009) Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling. Cell Cycle 8:1860–1864

    Article  Google Scholar 

  245. Morris JP 4th, Cano DA, Sekine S, Wang SC, Hebrok M (2010) Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 120:508–520

    Article  PubMed  CAS  Google Scholar 

  246. Mizumoto K, Tsutsumi M, Denda A, Konishi Y (1988) Rapid production of pancreatic carcinoma by initiation with N-nitroso-bis(2-oxopropyl)amine and repeated augmentation pressure in hamsters. J Natl Cancer Inst 80:1564–1567

    Article  PubMed  CAS  Google Scholar 

  247. Tsutsumi M, Kondoh S, Noguchi O, Horiguchi K, Kobayashi E, Okita S, Ohashi K, Honoki K, Tsujiuchi T, Konishi Y (1993) K-ras gene mutation in early ductal lesions induced in a rapid production model for pancreatic carcinomas in Syrian hamsters. Jpn J Cancer Res 84:1101–1105

    Article  PubMed  CAS  Google Scholar 

  248. Hori M, Kitahashi T, Imai T, Ishigamori R, Takasu S, Mutoh M, Sugimura T, Wakabayashi K, Takahashi M (2011) Enhancement of carcinogenesis and fatty infiltration in the pancreas in N-nitrosobis(2-oxopropyl)amine-treated hamsters by high-fat diet. Pancreas 40:1234–1240

    Article  PubMed  CAS  Google Scholar 

  249. Rosso E, Casnedi S, Pessaux P, Oussoultzoglou E, Panaro F, Mahfud M, Jaeck D, Bachellier P (2009) The role of “fatty pancreas” and of BMI in the occurrence of pancreatic fistula after pancreaticoduodenectomy. J Gastrointest Surg 13:1845–1851

    Article  PubMed  Google Scholar 

  250. Lee JS, Kim SH, Jun DW, Han JH, Jang EC, Park JY, Son BK, Kim SH, Jo YJ, Park YS, Kim YS (2009) Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J Gastroenterol 15:1869–1875

    Article  PubMed  CAS  Google Scholar 

  251. Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM, Klöppel G, Sipos B, Greten FR, Arkan MC (2009) Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci U S A 106:3354–3359

    Article  PubMed  CAS  Google Scholar 

  252. Lee KE, Bar-Sagi D (2010) Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Cancer Cell 18:448–458

    Article  PubMed  CAS  Google Scholar 

  253. Wolff RA (2003) Chemoprevention for pancreatic cancer. Int J Gastrointest Cancer 33:27–41

    Article  PubMed  CAS  Google Scholar 

  254. Youns M, Efferth T, Hoheisel JD (2011) Transcript profiling identifies novel key players mediating the growth inhibitory effect of NS-398 on human pancreatic cancer cells. Eur J Pharmacol 650:170–177

    Article  PubMed  CAS  Google Scholar 

  255. Kokawa A, Kondo H, Gotoda T, Ono H, Saito D, Nakadaira S, Kosuge T, Yoshida S (2001) Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors. Cancer 91:333–338

    Article  PubMed  CAS  Google Scholar 

  256. Pino SM, Xiong HQ, McConkey D, Abbruzzese JL (2004) Novel therapies for pancreatic adenocarcinoma. Curr Gastroenterol Rep 6:119–125

    Article  PubMed  Google Scholar 

  257. Kotsinas A, Gorgoulis V, Zacharatos P, Zioris H, Triposkiadis F, Donta I, Kyriakidis M, Karayannacos P, Kittas C (1999) Antioxidant agent nimesulid and beta-blocker metoprolol do not exert protective effects against rat mitochondrial DNA alterations in adriamycin-induced cardiotoxicity. Biochem Biophys Res Commun 254:651–656

    Article  PubMed  CAS  Google Scholar 

  258. Furukawa F, Nishikawa A, Lee IS, Kanki K, Umemura T, Okazaki K, Kawamori T, Wakabayashi K, Hirose M (2003) A cyclooxygenase-2 inhibitor, nimesulide, inhibits postinitiation phase of N-nitrosobis(2-oxopropyl)amine-induced pancreatic carcinogenesis in hamsters. Int J Cancer 104:269–273

    Article  PubMed  CAS  Google Scholar 

  259. Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, Eibl G (2007) Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 67:7068–7071

    Article  PubMed  CAS  Google Scholar 

  260. Bosetti C, Gallus S, La Vecchia C (2009) Aspirin and cancer risk: a summary review to 2007. Recent Results Cancer Res 181:231–251

    Article  PubMed  CAS  Google Scholar 

  261. Anderson KE, Johnson TW, Lazovich D, Folsom AR (2002) Association between nonsteroidal anti-inflammatory drug use and the incidence of pancreatic cancer. J Natl Cancer Inst 94:1168–1171

    Article  PubMed  Google Scholar 

  262. Schernhammer ES, Kang JH, Chan AT, Michaud DS, Skinner HG, Giovannucci E, Colditz GA, Fuchs CS (2004) A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst 96:22–28

    Article  PubMed  CAS  Google Scholar 

  263. Fendrich V, Chen NM, Neef M, Waldmann J, Buchholz M, Feldmann G, Slater EP, Maitra A, Bartsch DK (2010) The angiotensin-I-converting enzyme inhibitor enalapril and aspirin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer. Gut 59:630–637

    Article  PubMed  CAS  Google Scholar 

  264. Fujioka S, Sclabas GM, Schmidt C, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C, Chiao PJ (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9:346–354

    PubMed  CAS  Google Scholar 

  265. Sclabas GM, Uwagawa T, Schmidt C, Hess KR, Evans DB, Abbruzzese JL, Chiao PJ (2005) Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer 103:2485–2490

    Article  PubMed  CAS  Google Scholar 

  266. Zhang Z, Rigas B (2006) NF-kappaB, inflammation and pancreatic carcinogenesis: NF-kappaB as a chemoprevention target (review). Int J Oncol 29:185–192

    PubMed  CAS  Google Scholar 

  267. Takahashi M, Furukawa F, Toyoda K, Sato H, Hasegawa R, Imaida K, Hayashi Y (1990) Effects of various prostaglandin synthesis inhibitors on pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl)amine. Carcinogenesis 11:393–395

    Article  PubMed  CAS  Google Scholar 

  268. Haanen C (2001) Sulindac and its derivatives: a novel class of anticancer agents. Curr Opin Investig Drugs 2:677–683

    PubMed  CAS  Google Scholar 

  269. Schuller HM, Zhang L, Weddle DL, Castonguay A, Walker K, Miller MS (2002) The cyclooxygenase inhibitor ibuprofen and the FLAP inhibitor MK886 inhibit pancreatic carcinogenesis induced in hamsters by transplacental exposure to ethanol and the tobacco carcinogen NNK. J Cancer Res Clin Oncol 128:525–532

    Article  PubMed  CAS  Google Scholar 

  270. Adachi T, Tajima Y, Kuroki T, Mishima T, Kitasato A, Tsuneoka N, Kanematsu T (2008) Chemopreventive effects of a selective cyclooxygenase-2 inhibitor (etodolac) on chemically induced intraductal papillary carcinoma of the pancreas in hamsters. Carcinogenesis 29:830–833

    Article  PubMed  CAS  Google Scholar 

  271. Xu XF, Xie CG, Wang XP, Liu J, Yu YC, Hu HL, Guo CY (2008) Selective inhibition of cyclooxygenase-2 suppresses the growth of pancreatic cancer cells in vitro and in vivo. Tohoku J Exp Med 215:149–157

    Article  PubMed  CAS  Google Scholar 

  272. Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De Petris G (2009) Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 182:216–224

    Article  PubMed  CAS  Google Scholar 

  273. Guerra M (1967) Toxicity of indomethacin. Report of a case of acute pancreatitis. JAMA 200:552–553

    Article  PubMed  CAS  Google Scholar 

  274. Zygmunt DJ, Williams HJ, Bienz SR (1986) Acute pancreatitis associated with long-term sulindac therapy. West J Med 144:461–462

    PubMed  CAS  Google Scholar 

  275. Cobb TK, Pierce JR Jr (1992) Acute pancreatitis associated with ketoprofen. South Med J 85:430–431

    Article  PubMed  CAS  Google Scholar 

  276. Khan IH, Edward N (1993) Pancreatitis associated with diclofenac. Postgrad Med J 69:486–487

    Article  PubMed  CAS  Google Scholar 

  277. Du Ville L, Debeuckelaere S, Reynaert H, Devis G (1993) Pancreatitis associated with naproxen. Am J Gastroenterol 88:464

    PubMed  Google Scholar 

  278. Stevenson DD, White AA, Simon RA (2012) Aspirin as a cause of pancreatitis in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 129:1687–1688

    Article  PubMed  CAS  Google Scholar 

  279. Carvalho KM, Morais TC, de Melo TS, de Castro Brito GA, de Andrade GM, Rao VS, Santos FA (2010) The natural flavonoid quercetin ameliorates cerulein-induced acute pancreatitis in mice. Biol Pharm Bull 33:1534–1539

    Article  PubMed  CAS  Google Scholar 

  280. Babu BI, Malleo G, Genovese T, Mazzon E, Di Paola R, Crisafulli C, Caminiti R, Siriwardena AK, Cuzzocrea S (2009) Green tea polyphenols ameliorate pancreatic injury in cerulein-induced murine acute pancreatitis. Pancreas 38:954–967

    Article  PubMed  CAS  Google Scholar 

  281. Durgaprasad S, Pai CG, Vasanthkumar AJF, Namitha S (2005) A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res 122:315–318

    PubMed  CAS  Google Scholar 

  282. Uden S, Bilton D, Nathan L, Hunt LP, Main C, Braganza JM (1990) Antioxidant therapy for recurrent pancreatitis: placebo-controlled trial. Aliment Pharmacol Ther 4:357–371

    Article  PubMed  CAS  Google Scholar 

  283. Uden S, Schofield D, Miller PF, Day JP, Bottiglier T, Braganza JM (1992) Antioxidant therapy for recurrent pancreatitis: biochemical profiles in a placebo-controlled trial. Aliment Pharmacol Ther 6:229–240

    Article  PubMed  CAS  Google Scholar 

  284. Bhardwaj P, Garg PK, Maulik SK, Saraya A, Tandon RK, Acharya SK (2009) A randomized controlled trial of antioxidant supplementation for pain relief in patients with chronic pancreatitis. Gastroenterology 136:149–159

    Article  PubMed  Google Scholar 

  285. Mizumoto K, Ito S, Kitazawa S, Tsutsumi M, Denda A, Konishi Y (1989) Inhibitory effect of butylated hydroxyanisole administration on pancreatic carcinogenesis in Syrian hamsters initiated with N-nitrosobis(2-oxopropyl)amine. Carcinogenesis 10:1491–1494

    Article  PubMed  CAS  Google Scholar 

  286. Hiura A, Tsutsumi M, Satake K (1997) Inhibitory effect of green tea extract on the process of pancreatic carcinogenesis induced by N-nitrosobis-(2-oxypropyl)amine (BOP) and on tumor promotion after transplantation of N-nitrosobis-(2-hydroxypropyl)amine (BHP)-induced pancreatic cancer in Syrian hamsters. Pancreas 15:272–277

    Article  PubMed  CAS  Google Scholar 

  287. Nakamura H, Nishikawa A, Furukawa F, Kasahara K, Miyauchi M, Son HY, Hirose M (2000) Inhibitory effects of protocatechuic acid on the post-initiation phase of hamster pancreatic carcinogenesis induced by N-nitrosobis(2-oxopropyl)amine. Anticancer Res 20:3423–3427

    PubMed  CAS  Google Scholar 

  288. Yokomatsu H, Hiura A, Tsutsumi M, Satake K (1996) Inhibitory effect of sarcophytol A on pancreatic carcinogenesis after initiation by N-nitrosobis(2-oxypropyl)amine in Syrian hamsters. Pancreas 13:154–159

    Article  PubMed  CAS  Google Scholar 

  289. Furukawa F, Nishikawa A, Lee IS, Son HY, Nakamura H, Miyauchi M, Takahashi M, Hirose M (2000) Inhibition by methionine of pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl) amine. Cancer Lett 152:163–167

    Article  PubMed  CAS  Google Scholar 

  290. Woutersen RA, Appel MJ, Van Garderen-Hoetmer A (1999) Modulation of pancreatic carcinogenesis by antioxidants. Food Chem Toxicol 37:981–984

    Article  PubMed  CAS  Google Scholar 

  291. Hillon P, Guiu B, Vincent J, Petit JM (2010) Obesity, type 2 diabetes and risk of digestive cancer. Gastroenterol Clin Biol 34:529–533

    Article  PubMed  CAS  Google Scholar 

  292. Heikkinen S, Auwerx J, Argmann CA (2007) PPARgamma in human and mouse physiology. Biochim Biophys Acta 1771:999–1013

    Article  PubMed  CAS  Google Scholar 

  293. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771:952–960

    Article  PubMed  CAS  Google Scholar 

  294. Zingarelli B, Sheehan M, Hake PW, O'Connor M, Denenberg A, Cook JA (2003) Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-Delta(12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J Immunol 171:6827–6837

    PubMed  CAS  Google Scholar 

  295. Mukherjee R, Davies PJ, Crombie DL, Bischoff ED, Cesario RM, Jow L, Hamann LG, Boehm MF, Mondon CE, Nadzan AM, Paterniti JR Jr, Heyman RA (1997) Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386:407–410

    Article  PubMed  CAS  Google Scholar 

  296. Leung N, Naples M, Uffelman K, Szeto L, Adeli K, Lewis GF (2004) Rosiglitazone improves intestinal lipoprotein overproduction in the fat-fed Syrian Golden hamster, an animal model of nutritionally-induced insulin resistance. Atherosclerosis 174:235–241

    Article  PubMed  CAS  Google Scholar 

  297. Schneider MB, Matsuzaki H, Haorah J, Ulrich A, Standop J, Ding XZ, Adrian TE, Pour PM (2001) Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120:1263–1270

    Article  PubMed  CAS  Google Scholar 

  298. Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E (2009) Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 69:6539–6545

    Article  PubMed  CAS  Google Scholar 

  299. Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137:482–488

    Article  PubMed  Google Scholar 

  300. Ersoy C, Kiyici S, Budak F, Oral B, Guclu M, Duran C, Selimoglu H, Erturk E, Tuncel E, Imamoglu S (2008) The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabetes Res Clin Pract 81:56–60

    Article  PubMed  CAS  Google Scholar 

  301. Lund SS, Tarnow L, Stehouwer CD, Schalkwijk CG, Teerlink T, Gram J, Winther K, Frandsen M, Smidt UM, Pedersen O, Parving HH, Vaag AA (2008) Impact of metformin versus repaglinide on non-glycaemic cardiovascular risk markers related to inflammation and endothelial dysfunction in non-obese patients with type 2 diabetes. Eur J Endocrinol 158:631–641

    Article  PubMed  CAS  Google Scholar 

  302. Huang NL, Chiang SH, Hsueh CH, Liang YJ, Chen YJ, Lai LP (2009) Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int J Cardiol 134:169–175

    Article  PubMed  Google Scholar 

  303. Bonnefont-Rousselot D, Raji B, Walrand S, Gardes-Albert M, Jore D, Legrand A, Peynet J, Vasson MP (2003) An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 52:586–589

    Article  PubMed  CAS  Google Scholar 

  304. Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, Tanti JF, Le Marchand-Brustel Y, Bost F (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27:3576–3586

    Article  PubMed  CAS  Google Scholar 

  305. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278

    Article  PubMed  CAS  Google Scholar 

  306. Chan KK, Oza AM, Siu LL (2003) The statins as anticancer agents. Clin Cancer Res 9:10–19

    PubMed  CAS  Google Scholar 

  307. Bu DX, Griffin G, Lichtman AH (2011) Mechanisms for the anti-inflammatory effects of statins. Curr Opin Lipidol 22:165–170

    Article  PubMed  CAS  Google Scholar 

  308. Vaklavas C, Chatzizisis YS, Tsimberidou AM (2011) Common cardiovascular medications in cancer therapeutics. Pharmacol Ther 130:177–190

    Article  PubMed  CAS  Google Scholar 

  309. Wei L, Yamamoto M, Harada M, Otsuki M (2011) Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Invest 91:872–884

    Article  PubMed  CAS  Google Scholar 

  310. Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, Inoue M, Nakamura H (2002) 3-Hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology 122:308–317

    Article  PubMed  CAS  Google Scholar 

  311. Gbelcová H, Lenícek M, Zelenka J, Knejzlik Z, Dvoráková G, Zadinová M, Poucková P, Kudla M, Balaz P, Ruml T, Vitek L (2008) Differences in antitumor effects of various statins on human pancreatic cancer. Int J Cancer 122:1214–1221

    Article  PubMed  CAS  Google Scholar 

  312. Khurana V, Sheth A, Caldito G, Barkin JS (2007) Statins reduce the risk of pancreatic cancer in humans: a case–control study of half a million veterans. Pancreas 34:260–265

    Article  PubMed  CAS  Google Scholar 

  313. Cui X, Xie Y, Chen M, Li J, Liao X, Shen J, Shi M, Li W, Zheng H, Jiang B (2012) Statin use and risk of pancreatic cancer: a meta-analysis. Cancer Causes Control 23:1099–1111

    Article  PubMed  Google Scholar 

  314. Yao CJ, Lai GM, Chan CF, Cheng AL, Yang YY, Chuang SE (2006) Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone. Int J Cancer 118:773–779

    Article  PubMed  CAS  Google Scholar 

  315. Bocci G, Fioravanti A, Orlandi P, Bernardini N, Collecchi P, Del Tacca M, Danesi R (2005) Fluvastatin synergistically enhances the antiproliferative effect of gemcitabine in human pancreatic cancer MIAPaCa-2 cells. Br J Cancer 93:319–330

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mami Takahashi.

Additional information

This article is a contribution to the Special Issue on Inflammation and Cancer—Guest Editor: Takuji Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, M., Mutoh, M., Ishigamori, R. et al. Involvement of inflammatory factors in pancreatic carcinogenesis and preventive effects of anti-inflammatory agents. Semin Immunopathol 35, 203–227 (2013). https://doi.org/10.1007/s00281-012-0340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0340-x

Keywords

Navigation