Skip to main content

Advertisement

Log in

Glycosylation of IgA1 and pathogenesis of IgA nephropathy

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

IgA nephropathy, described in 1968 as IgA-IgG immune-complex disease, is an autoimmune disease. Galactose-deficient IgA1 is recognized by unique autoantibodies, resulting in the formation of pathogenic immune complexes that ultimately induce glomerular injury. Thus, formation of the galactose-deficient IgA1-containing immune complexes is a critical factor in the pathogenesis of IgA nephropathy. Studies of molecular defects of IgA1 can define new biomarkers specific for IgA nephropathy that can be developed into clinical assays to aid in the diagnosis, assessment of prognosis, and monitoring of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berger J, Hinglais N (1968) Les dépôts intercapillaires d’IgA-IgG (intercapillary deposits of IgA-IgG). J Urol Nephrol 74:694–695

    CAS  Google Scholar 

  2. Emancipator SN, Mestecky J, Lamm ME (2005) IgA nephropathy and related diseases. In: Mestecky J, Lamm ME, McGhee JR, Bienenstock J, Mayer L, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier, Amsterdam, pp 1579–1600

    Chapter  Google Scholar 

  3. Julian BA, Wyatt RJ, Matousovic K, Moldoveanu Z, Mestecky J, Novak J (2007) IgA nephropathy: a clinical overview. Contrib Nephrol 157:19–26

    PubMed  Google Scholar 

  4. Julian BA, Suzuki H, Suzuki Y, Tomino Y, Spasovski G, Novak J (2009) Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics Clin Appl 3:1029–1043

    Article  PubMed  CAS  Google Scholar 

  5. Jennette JC (1988) The immunohistology of IgA nephropathy. Am J Kidney Dis 12:348–352

    PubMed  CAS  Google Scholar 

  6. Conley ME, Cooper MD, Michael AF (1980) Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus. J Clin Invest 66:1432–1436

    Article  PubMed  CAS  Google Scholar 

  7. Muda AO, Feriozzi S, Rahimi S, Faraggiana T (1995) Spatial arrangement of IgA and C3 as a prognostic indicator of IgA nephropathy. J Pathol 177:201–208

    Article  PubMed  CAS  Google Scholar 

  8. Bellur SS, Troyanov S, Cook HT, Roberts IS (2011) Immunostaining findings in IgA nephropathy: correlation with histology and clinical outcome in the Oxford classification patient cohort. Nephrol Dial Transplant 26:2533–2536

    Article  PubMed  Google Scholar 

  9. Nieuwhof C, Kruytzer M, Frederiks P, van Breda Vriesman PJC (1998) Chronicity index and mesangial IgG deposition are risk factors for hypertension and renal failure in early IgA nephropathy. Am J Kidney Dis 31:962–970

    Article  PubMed  CAS  Google Scholar 

  10. Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, Bruijn JA, D’Agati V, D’Amico G, Emancipator S, Emma F, Ferrario F, Fervenza FC, Florquin S, Fogo A, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Leung CB, Li LS, Li PK, Liu ZH, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76:534–545

    Article  PubMed  Google Scholar 

  11. Coppo R, Troyanov S, Camilla R, Hogg RJ, Cattran DC, Cook HT, Feehally J, Roberts IS, Amore A, Alpers CE, Barratt J, Berthoux F, Bonsib S, Bruijn JA, D’Agati V, D’Amico G, Emancipator SN, Emma F, Ferrario F, Fervenza FC, Florquin S, Fogo AB, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Li LS, Li PK, Liu ZH, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H (2010) The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int 77:921–927

    Article  PubMed  CAS  Google Scholar 

  12. Roberts IS, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, Bruijn JA, Cattran DC, Coppo R, D’Agati V, D’Amico G, Emancipator S, Emma F, Feehally J, Ferrario F, Fervenza FC, Florquin S, Fogo A, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Li LS, Li PK, Liu ZH, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H (2009) The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76:546–556

    Article  PubMed  Google Scholar 

  13. Herzenberg AM, Fogo AB, Reich HN, Troyanov S, Bavbek N, Massat AE, Hunley TE, Hladunewich MA, Julian BA, Fervenza FC, Cattran DC (2011) Validation of the Oxford classification of IgA nephropathy. Kidney Int 80:310–317

    Article  PubMed  Google Scholar 

  14. Mestecky J, Moro I, Kerr MA, Woof JM (2005) Mucosal immunoglobulins. In: Mestecky J, Lamm ME, McGhee JR, Bienenstock J, Mayer L, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier, Amsterdam, pp 153–181

    Chapter  Google Scholar 

  15. Pakkanen SH, Kantele JM, Moldoveanu Z, Hedges S, Hakkinen M, Mestecky J, Kantele A (2010) Expression of homing receptors on IgA1 and IgA2 plasmablasts in blood reflects differential distribution of IgA1 and IgA2 in various body fluids. Clin Vaccine Immunol 17:393–401

    Article  PubMed  CAS  Google Scholar 

  16. Kilian M, Reinholdt J, Lomholt H, Poulsen K, Fradsen EVG (1996) Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: Critical evaluation of experimental evidence. APMIS 104:321–338

    Article  PubMed  CAS  Google Scholar 

  17. Kilian M, Russell MW (2005) Microbial evasion of IgA functions. In: Mestecky J, Lamm ME, McGhee JR, Bienenstock J, Mayer L, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier, Amsterdam, pp 291–303

    Chapter  Google Scholar 

  18. Kilian M, Mestecky J, Kulhavy R, Tomana M, Butler WT (1980) IgA1 proteases from Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis, and Streptococcus sanguis: comparative immunochemical studies. J Immunol 124:2596–2600

    PubMed  CAS  Google Scholar 

  19. Tarelli E, Smith AC, Hendry BM, Challacombe SJ, Pouria S (2004) Human serum IgA1 is substituted with up to six O-glycans as shown by matrix assisted laser desorption ionisation time-of-flight mass spectrometry. Carbohydr Res 339:2329–2335

    Article  PubMed  CAS  Google Scholar 

  20. Iwase H, Tanaka A, Hiki Y, Kokubo T, Ishii-Karakasa I, Nishikido J, Kobayashi Y, Hotta K (1998) Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry to the analysis of glycopeptide-containing multiple O-linked oligosaccharides. J Chromatogr Biomed Sci Appl 709:145–149

    Article  CAS  Google Scholar 

  21. Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA (1998) The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem 273:2260–2272

    Article  PubMed  CAS  Google Scholar 

  22. Renfrow MB, Cooper HJ, Tomana M, Kulhavy R, Hiki Y, Toma K, Emmett MR, Mestecky J, Marshall AG, Novak J (2005) Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem 280:19136–19145

    Article  PubMed  CAS  Google Scholar 

  23. Renfrow MB, MacKay CL, Chalmers MJ, Julian BA, Mestecky J, Kilian M, Poulsen K, Emmett MR, Marshall AG, Novak J (2007) Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem 389:1397–1407

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi K, Wall SB, Suzuki H, Smith AD, Hall S, Poulsen K, Kilian M, Mobley JA, Julian BA, Mestecky J, Novak J, Renfrow MB (2010) Clustered O-glycans of IgA1: defining macro- and micro-heterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics 9:2545–2557

    Article  PubMed  CAS  Google Scholar 

  25. Wada Y, Dell A, Haslam SM, Tissot B, Canis K, Azadi P, Backstrom M, Costello CE, Hansson GC, Hiki Y, Ishihara M, Ito H, Kakehi K, Karlsson N, Hayes CE, Kato K, Kawasaki N, Khoo KH, Kobayashi K, Kolarich D, Kondo A, Lebrilla C, Nakano M, Narimatsu H, Novak J, Novotny MV, Ohno E, Packer NH, Palaima E, Renfrow MB, Tajiri M, Thomsson KA, Yagi H, Yu SY, Taniguchi N (2010) Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol Cell Proteomics 9:719–727

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka A, Iwase H, Hiki Y, Kokubo T, Ishii-Karakasa I, Toma K, Kobayashi Y, Hotta K (1998) Evidence for a site-specific fucosylation of N-linked oligosaccharide of immunoglobulin A1 from normal human serum. Glycoconj J 15:995–1000

    Article  PubMed  CAS  Google Scholar 

  27. Gomes MM, Wall SB, Takahashi K, Novak J, Renfrow MB, Herr AB (2008) Analysis of IgA1 N-glycosylation and its contribution to FcαRI binding. Biochemistry 47:11285–11299

    Article  PubMed  CAS  Google Scholar 

  28. Baenziger J, Kornfeld S (1974) Structure of the carbohydrate units of IgA1 immunoglobulin II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem 249:7270–7281

    PubMed  CAS  Google Scholar 

  29. Field MC, Dwek RA, Edge CJ, Rademacher TW (1989) O-linked oligosaccharides from human serum immunoglobulin A1. Biochem Soc Trans 17:1034–1035

    PubMed  CAS  Google Scholar 

  30. Tomana M, Niedermeier W, Mestecky J, Hammack WJ (1972) The carbohydrate composition of human myeloma IgA. Immunochemistry 9:933–940

    Article  PubMed  CAS  Google Scholar 

  31. Tomana M, Niedermeier W, Mestecky J, Skvaril F (1976) The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry 13:325–328

    Article  PubMed  CAS  Google Scholar 

  32. Tomana M, Niedermeier W, Spivey C (1978) Microdetermination of monosaccharide in glycoproteins. Anal Biochem 89:110–118

    Article  PubMed  CAS  Google Scholar 

  33. Peppard JV, Kaetzel CS, Russell MW (2005) Phylogeny and comparative physiology of IgA. In: Mestecky J, Lamm ME, McGhee JR, Bienenstock J, Mayer L, Strober W (eds) Mucosal immunology. Elsevier, Amsterdam, pp 195–208

    Chapter  Google Scholar 

  34. Conley ME, Delacroix DL (1987) Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defence? Ann Intern Med 106:892–899

    PubMed  CAS  Google Scholar 

  35. Mestecky J, Russell MW, Jackson S, Brown TA (1986) The human IgA system: a reassessment. Clin Immunol Immunopathol 40:105–114

    Article  PubMed  CAS  Google Scholar 

  36. Mestecky J, Lue C, Tarkowski A, Ladjeva I, Peterman JH, Moldoveanu Z, Russell MW, Brown TA, Radl J, Haaijman JJ, Kiyono H, McGhee JR (1989) Comparative studies of the biological properties of human IgA subclasses. Protides Biol Fluids 36:173–182

    CAS  Google Scholar 

  37. Baenziger JU, Fiete D (1980) Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 22:611–620

    Article  PubMed  CAS  Google Scholar 

  38. Baenziger JU, Maynard Y (1980) Human hepatic lectin. Physicochemical properties and specificity. J Biol Chem 255:4607–4613

    PubMed  CAS  Google Scholar 

  39. Baenziger JU, Fiete D (1982) Recycling of hepatocyte asialoglycoprotein receptor does not require delivery of ligand to lysosomes. J Biol Chem 257:6007–6009

    PubMed  CAS  Google Scholar 

  40. Moldoveanu Z, Epps JM, Thorpe SR, Mestecky J (1988) The sites of catabolism of murine monomeric IgA. J Immunol 141:208–213

    PubMed  CAS  Google Scholar 

  41. Moldoveanu Z, Moro I, Radl J, Thorpe SR, Komiyama K, Mestecky J (1990) Site of catabolism of autologous and heterologous IgA in non-human primates. Scand J Immunol 32:577–583

    Article  PubMed  CAS  Google Scholar 

  42. Phillips JO, Russell MW, Brown TA, Mestecky J (1984) Selective hepatobiliary transport of human polymeric IgA in mice. Mol Immunol 21:907–914

    Article  PubMed  CAS  Google Scholar 

  43. Phillips JO, Komiyama K, Epps JM, Russell MW, Mestecky J (1988) Role of hepatocytes in the uptake of IgA and IgA-containing immune complexes in mice. Mol Immunol 25:873–879

    Article  PubMed  CAS  Google Scholar 

  44. Tomana M, Phillips JO, Kulhavy R, Mestecky J (1985) Carbohydrate-mediated clearance of secretory IgA from the circulation. Mol Immunol 22:887–892

    Article  PubMed  CAS  Google Scholar 

  45. Tomana M, Kulhavy R, Mestecky J (1988) Receptor-mediated binding and uptake of immunoglobulin A by human liver. Gastroenterology 94:887–892

    Google Scholar 

  46. Ashwell G, Harford J (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51:531–554

    Article  PubMed  CAS  Google Scholar 

  47. Stockert RJ (1995) The asialoglycoprotein receptor: relationship between structure, function and expression. Physiol Rev 75:591–609

    PubMed  CAS  Google Scholar 

  48. Stockert RJ, Kressner MS, Collins JD, Sternlieb I, Morell AG (1982) IgA interactions with the asialoglycoprotein receptor. Proc Natl Acad Sci USA 79:6229–6231

    Article  PubMed  CAS  Google Scholar 

  49. Mestecky J, Moldoveanu Z, Tomana M, Epps JM, Thorpe SR, Phillips JO, Kulhavy R (1989) The role of the liver in catabolism of mouse and human IgA. Immunol Invest 18:313–324

    Article  PubMed  CAS  Google Scholar 

  50. Kutteh WH, Prince SJ, Phillips JO, Spenney JG, Mestecky J (1982) Properties of immunoglobulin A in serum of individuals with liver diseases and in hepatic bile. Gastroenterology 82:184–193

    PubMed  CAS  Google Scholar 

  51. Andre PM, Le Pogamp P, Chevet D (1990) Impairment of jacalin binding to serum IgA in IgA nephropathy. J Clin Lab Anal 4:115–119

    Article  PubMed  CAS  Google Scholar 

  52. Mestecky J, Tomana M, Crowley-Nowick PA, Moldoveanu Z, Julian BA, Jackson S (1993) Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib Nephrol 104:172–182

    PubMed  CAS  Google Scholar 

  53. Allen AC, Harper SJ, Feehally J (1995) Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clin Exp Immunol 100:470–474

    Article  PubMed  CAS  Google Scholar 

  54. Smith AC, de Wolff JF, Molyneux K, Feehally J, Barratt J (2006) O-glycosylation of serum IgD in IgA nephropathy. J Am Soc Nephrol 17:1192–1199

    Article  PubMed  CAS  Google Scholar 

  55. Allen AC, Bailey EM, Barratt J, Buck KS, Feehally J (1999) Analysis of IgA1 O-glycans in IgA nephropathy by fluorophore-assisted carbohydrate electrophoresis. J Am Soc Nephrol 10:1763–1771

    PubMed  CAS  Google Scholar 

  56. Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J (1997) Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 52:509–516

    Article  PubMed  CAS  Google Scholar 

  57. Coppo R, Basolo B, Martina G, Rollino C, De Marchi M, Giacchino F, Mazzucco G, Messina M, Piccoli G (1982) Circulating immune complexes containing IgA, IgG and IgM in patients with primary IgA nephropathy and with Henoch–Schönlein nephritis. Correlation with clinical and histologic signs of activity. Clin Nephrol 18:230–239

    PubMed  CAS  Google Scholar 

  58. Levinsky RJ, Barratt TM (1979) IgA immune complexes in Henoch–Schönlein purpura. Lancet 2:1100–1103

    Article  PubMed  CAS  Google Scholar 

  59. Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J (1999) Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 104:73–81

    Article  PubMed  CAS  Google Scholar 

  60. Tomana M, Novak J, Julian BA, Mestecky J (2000) IgA1 glycosylation and the pathogenesis of IgA nephropathy. Am J Kidney Dis 35:555–556

    Article  Google Scholar 

  61. Iwase H, Yokozeki Y, Hiki Y, Tanaka A, Kokubo T, Sano T, Ishii-Karakasa I, Hisatani K, Kobayashi Y, Hotta K (1999) Human serum immunoglobulin G3 subclass bound preferentially to asialo-, agalactoimmunoglobulin A1/Sepharose. Biochem Biophys Res Commun 264:424–429

    Article  PubMed  CAS  Google Scholar 

  62. Kokubo T, Hiki Y, Iwase H, Tanaka A, Nishikido J, Hotta K, Kobayashi Y (1999) Exposed peptide core of IgA1 hinge region in IgA nephropathy. Nephrol Dial Transplant 14:81–85

    Article  PubMed  CAS  Google Scholar 

  63. Monteiro RC, Halbwachs-Mecarelli L, Berger J, Lesavre P (1984) Characteristics of eluted IgA in primary IgA nephropathy. Contrib Nephrol 40:107–111

    PubMed  CAS  Google Scholar 

  64. Monteiro RC, Halbwachs-Mecarelli L, Roque-Barreira MC, Noel LH, Berger J, Lesavre P (1985) Charge and size of mesangial IgA in IgA nephropathy. Kidney Int 28:666–671

    Article  PubMed  CAS  Google Scholar 

  65. Allen AC, Bailey EM, Brenchley PEC, Buck KS, Barratt J, Feehally J (2001) Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int 60:969–973

    Article  PubMed  CAS  Google Scholar 

  66. Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, Shinzato T, Kobayashi Y, Maeda K (2001) Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int 59:1077–1085

    Article  PubMed  CAS  Google Scholar 

  67. Coppo R, Feehally J, Glassock RJ (2010) IgA nephropathy at two score and one. Kidney Int 77:181–186

    Article  PubMed  CAS  Google Scholar 

  68. Julian BA, Tomana M, Novak J, Mestecky J (1999) Progress in the pathogenesis of IgA nephropathy. Adv Nephrol 29:53–72

    CAS  Google Scholar 

  69. Julian BA, Novak J (2004) IgA nephropathy: an update. Current Opin Nephrol Hypertens 13:171–179

    Article  CAS  Google Scholar 

  70. Novak J, Julian BA, Tomana M, Mestecky J (2001) Progress in molecular and genetic studies of IgA nephropathy. J Clin Immunol 21:310–327

    Article  PubMed  CAS  Google Scholar 

  71. Floege J, Feehally J (2000) IgA nephropathy: recent developments. J Am Soc Nephrol 11:2395–2403

    PubMed  CAS  Google Scholar 

  72. Novak J, Julian BA, Tomana M, Mestecky J (2008) IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 28:78–87

    Article  PubMed  CAS  Google Scholar 

  73. Novak J, Mestecky J (2009) IgA Immune-complex. In: Lai KN (ed) Recent Advances in IgA nephropathy. Imperial College Press, Hong Kong, pp 177–191

    Chapter  Google Scholar 

  74. Allen AC (1999) Methodological approaches to the analysis of IgA1 O-glycosylation in IgA nephropathy. J Nephrol 12:76–84

    PubMed  CAS  Google Scholar 

  75. Hiki Y, Horii A, Iwase H, Tanaka A, Toda Y, Hotta K, Kobayashi Y (1995) O-linked oligosaccharide on IgA1 hinge region in IgA nephropathy. Fundamental study for precise structure and possible role. Contrib Nephrol 111:73–84

    PubMed  CAS  Google Scholar 

  76. Hiki Y, Kokubo T, Iwase H, Masaki Y, Sano T, Tanaka A, Toma K, Hotta K, Kobayashi Y (1999) Underglycosylation of IgA1 hinge plays a certain role for its glomerular deposition in IgA nephropathy. J Am Soc Nephrol 10:760–769

    PubMed  CAS  Google Scholar 

  77. Iwase H, Tanaka A, Hiki Y, Kokubo T, Karakasa-Ishii I, Kobayashi Y, Hotta K (1996) Estimation of the number of O-linked oligosaccharides per heavy chain of human IgA1 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of the hinge glycopeptide. J Biochem 120:393–397

    Article  PubMed  CAS  Google Scholar 

  78. Novak J, Tomana M, Kilian M, Coward L, Kulhavy R, Barnes S, Mestecky J (2000) Heterogeneity of O-glycosylation in the hinge region of human IgA1. Mol Immunol 37:1047–1056

    Article  PubMed  CAS  Google Scholar 

  79. Gomes MM, Suzuki H, Brooks MT, Tomana M, Moldoveanu Z, Mestecky J, Julian BA, Novak J, Herr AB (2010) Recognition of galactose-deficient O-glycans in the hinge region of IgA1 by N-acetylgalactosamine-specific snail lectins: a comparative binding study. Biochemistry 49:5671–5682

    Article  PubMed  CAS  Google Scholar 

  80. Lau KL, Wyatt RJ, Moldoveanu Z, Tomana M, Julian BJ, Hogg RJ, Lee JY, Huang W-Q, Mestecky J, Novak J (2007) Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch–Schoenlein purpura. Ped Nephrol 22:2067–2072

    Article  Google Scholar 

  81. Leung JC, Tang SC, Chan DT, Lui SL, Lai KN (2002) Increased sialylation of polymeric lambda-IgA1 in patients with IgA nephropathy. J Clin Lab Anal 16:11–19

    Article  PubMed  CAS  Google Scholar 

  82. Moldoveanu Z, Wyatt RJ, Lee J, Tomana M, Julian BA, Mestecky J, Huang W-Q, Anreddy S, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:1148–1154

    Article  PubMed  CAS  Google Scholar 

  83. Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, Hall S, Kilian M, Poulsen K, Mestecky J, Julian BA, Novak J (2007) Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol 44:2598–2604

    Article  PubMed  CAS  Google Scholar 

  84. Novak J, Moldoveanu Z, Renfrow MB, Yanagihara T, Suzuki H, Raska M, Hall S, Brown R, Huang WQ, Goepfert A, Kilian M, Poulsen K, Tomana M, Wyatt RJ, Julian BA, Mestecky J (2007) IgA nephropathy and Henoch–Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol 157:134–138

    Article  PubMed  CAS  Google Scholar 

  85. Novak J, Raskova Kafkova L, Suzuki H, Tomana M, Matousovic K, Brown R, Hall S, Sanders JT, Eison TM, Moldoveanu Z, Novak L, Novak Z, Mayne R, Julian BA, Mestecky J, Wyatt RJ (2011) IgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured mesangial cells. Nephrol Dial Transplant 26:3451–3457

    Article  PubMed  CAS  Google Scholar 

  86. Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, Julian BA, Tomana M, Wyatt RJ, Edberg JE, Alarcón GS, Kimberly RP, Tomino Y, Mestecky J, Novak J (2008) IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 118:629–639

    PubMed  CAS  Google Scholar 

  87. Shimozato S, Hiki Y, Odani H, Takahashi K, Yamamoto K, Sugiyama S (2008) Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy. Nephrol Dial Transplant 23:1931–1939

    Article  PubMed  CAS  Google Scholar 

  88. Takahashi K, Hiki Y, Odani H, Shimozato S, Iwase H, Sugiyama S, Usuda N (2006) Structural analyses of O-glycan sugar chains on IgA1 hinge region using SELDI-TOFMS with various lectins. Biochem Biophys Res Commun 350:580–587

    Article  PubMed  CAS  Google Scholar 

  89. Iwase H, Tanaka A, Hiki Y, Kokubo T, Sano T, Ishii-Karakasa I, Toma K, Kobayashi Y, Hotta K (1999) Aggregated human serum immunoglobulin A1 induced by neuraminidase treatment had a lower number of O-linked sugar chains on the hinge portion. J Chromatogr 724:1–7

    Article  CAS  Google Scholar 

  90. Odani H, Hiki Y, Takahashi M, Nishimoto A, Yasuda Y, Iwase H, Shinzato T, Maeda K (2000) Direct evidence for decreased sialylation and galactosylation of human serum IgA1 Fc O-glycosylated hinge peptides in IgA nephropathy by mass spectrometry. Biochem Biophys Res Commun 271:268–274

    Article  PubMed  CAS  Google Scholar 

  91. Horie A, Hiki Y, Odani H, Yasuda Y, Takahashi M, Kato M, Iwase H, Kobayashi Y, Nakashima I, Maeda K (2003) IgA1 molecules produced by tonsillar lymphocytes are under-O-glycosylated in IgA nephropathy. Am J Kidney Dis 42:486–496

    Article  PubMed  CAS  Google Scholar 

  92. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266

    Article  CAS  Google Scholar 

  93. Kelleher RL, Zubarev RA, Bush K, Furie B, Furie BC, McLafferty FW, Walsh CT (1999) Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid. Anal Chem 71:4250–4253

    Article  PubMed  CAS  Google Scholar 

  94. Haselmann KF, Budnik BA, Olsen JV, Nielsen ML, Reis CA, Clausen H, Johnsen AH, Zubarev RA (2001) Advantages of external accumulation for electron capture dissociation in Fourier transform mass spectrometry. Anal Chem 73:2998–3005

    Article  PubMed  CAS  Google Scholar 

  95. Gastaldi D, Paradisi L, Baiocchi C, Medana C, Lo Duca G, Sena LM, Roccatello D (2007) Mass spectrometry analysis of IgA1 hinge region in patients with IgA nephropathy. J Nephrol 20:689–695

    PubMed  CAS  Google Scholar 

  96. Hiki Y, Tanaka A, Kokubo T, Iwase H, Nishikido J, Hotta K, Kobayashi Y (1998) Analyses of IgA1 hinge glycopeptides in IgA nephropathy by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Nephrol 9:577–582

    PubMed  CAS  Google Scholar 

  97. Rebecchi KR, Wenke JL, Go EP, Desaire H (2009) Label-free quantitation: a new glycoproteomics approach. J Am Soc Mass Spectrom 20:1048–1059

    Article  PubMed  CAS  Google Scholar 

  98. Wada Y, Tajiri M, Ohshima S (2010) Quantitation of saccharide compositions of O-glycans by mass spectrometry of glycopeptides and its application to rheumatoid arthritis. J Proteome Res 9:1367–1373

    Article  PubMed  CAS  Google Scholar 

  99. Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, Novak J, Renfrow MB (2012) Identification of structural isomers in IgA1 hinge-region O-glycosylation using high-resolution mass spectrometry. J Proteome Res 11:692–702

    Article  PubMed  CAS  Google Scholar 

  100. Gerken TA, Jamison O, Perrine CL, Collette JC, Moinova H, Ravi L, Markowitz SD, Shen W, Patel H, Tabak LA (2011) Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J Biol Chem 286:14493–14507

    Article  PubMed  CAS  Google Scholar 

  101. LaMont JT, Ventola AS (1980) Purification and composition of colonic epithelial mucin. Biochim Biophys Acta 626:234–243

    PubMed  CAS  Google Scholar 

  102. Lloyd KO, Burchell J, Kudryashov V, Yin BW, Taylor-Papadimitriou J (1996) Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 271:33325–33334

    Article  PubMed  CAS  Google Scholar 

  103. Podolsky DK, Isselbacher KJ (1983) Composition of human colonic mucin. Selective alternation in inflamatory bowel disease. J Clin Invest 72:142–153

    Article  PubMed  CAS  Google Scholar 

  104. Podolsky DK (1985) Oligosaccharide structures of human colonic mucin. J Biol Chem 260:8262–8271

    PubMed  CAS  Google Scholar 

  105. Schachter H, McGuire EJ, Roseman S (1971) Sialic acids. XIII. A uridine diphosphate d-galactose: mucin galactosyltransferase from porcine submaxillary gland. J Biol Chem 246:5321–5328

    PubMed  CAS  Google Scholar 

  106. Beum PV, Singh J, Burdick M, Hollingsworth MA, Cheng PW (1999) Expression of core 2 β-1,6-N-acetylglucosaminyltransferase in a human pancreatic cancer cell line results in altered expression of MUC1 tumor-associated epitopes. J Biol Chem 274:24641–24648

    Article  PubMed  CAS  Google Scholar 

  107. Boland CR, Montgomery CK, Kim YS (1982) Alternations in human colonic mucin occuring with cellular differentiation and malignant transformation. Proc Natl Acad Sci USA 79:2051–2055

    Article  PubMed  CAS  Google Scholar 

  108. Clamp JR, Fraser G, Read AE (1981) Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin Sci 61:229–234

    PubMed  CAS  Google Scholar 

  109. Culling CFA, Reid PE, Dunn WL, Clay MG (1977) Histochemical comparison of the epithelial mucins in the ileum in Crohn’s disease and in normal controls. J Clin Pathol 30:1063–1067

    Article  PubMed  CAS  Google Scholar 

  110. Jacobs LR, Huber PW (1985) Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from controls and subjects with inflamatory bowel disease. J Clin Invest 75:112–118

    Article  PubMed  CAS  Google Scholar 

  111. Kohlgraf KG, Gawron AJ, Higashi M, Meza JL, Burdick MD, Kitajima S, Kelly DL, Caffrey TC, Hollingsworth MA (2003) Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res 63:5011–5020

    PubMed  CAS  Google Scholar 

  112. Murty VLN, Downs FJ, Pigman W (1978) Rat colonic mucous glycoprotein. Carbohydr Res 61:139–145

    Article  PubMed  CAS  Google Scholar 

  113. Tarp MA, Sorensen AL, Mandel U, Paulsen H, Burchell J, Taylor-Papadimitriou J, Clausen H (2007) Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 17:197–209

    Article  PubMed  CAS  Google Scholar 

  114. Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ (2004) MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82:249–293

    Article  PubMed  CAS  Google Scholar 

  115. Berger EG (1999) Tn-syndrome. Biochim Biophys Acta 1455:255–268

    PubMed  CAS  Google Scholar 

  116. Gahmberg CG, Peltokorpi L, Andersson L (1986) B lymphoblastoid cell lines with normal and defective O-glycosylation established from an individual with blood group Tn. Blood 67:973–979

    PubMed  CAS  Google Scholar 

  117. Ju T, Cummings RD (2005) Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437:1252

    Article  PubMed  CAS  Google Scholar 

  118. Kono M, Tsuda T, Ogata S, Takashima S, Liu H, Hamamoto T, Itzkowitz SH, Nishimura S, Tsuji S (2000) Redefined substrate specificity of ST6GalNAc II: a second candidate sialyl-Tn synthase. Biochem Biophys Res Commun 272:94–97

    Article  PubMed  CAS  Google Scholar 

  119. Marcos NT, Pinho S, Grandela C, Cruz A, Samyn-Petit B, Harduin-Lepers A, Almeida R, Silva F, Morais V, Costa J, Kihlberg J, Clausen H, Reis CA (2004) Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res 64:7050–7057

    Article  PubMed  CAS  Google Scholar 

  120. Sewell R, Backstrom M, Dalziel M, Gschmeissner S, Karlsson H, Noll T, Gatgens J, Clausen H, Hansson GC, Burchell J, Taylor-Papadimitriou J (2006) The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem 281:3586–3594

    Article  PubMed  CAS  Google Scholar 

  121. Springer GF (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 75:594–602

    Article  PubMed  CAS  Google Scholar 

  122. Thurnher M, Rusconi S, Berger EG (1993) Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome. J Clin Invest 91:2103–2110

    Article  PubMed  CAS  Google Scholar 

  123. Vainchenker W, Vinci G, Testa U, Henri A, Tabilio A, Fache M-P, Rochant H, Carton JP (1985) Presence of the Tn antigen on hematopoietic progenitors from patients with the Tn syndrome. J Clin Invest 75:541–546

    Article  PubMed  CAS  Google Scholar 

  124. Raska M, Moldoveanu Z, Suzuki H, Brown R, Kulhavy R, Hall S, Vu HL, Carlsson F, Lindahl G, Tomana M, Julian BA, Wyatt RJ, Mestecky J, Novak J (2007) Identification and characterization of CMP-NeuAc:GalNAc-IgA1 α2,6-sialyltransferase in IgA1-producing cells. J Mol Biol 369:69–78

    Article  PubMed  CAS  Google Scholar 

  125. Buck KS, Smith AC, Molyneux K, El-Barbary H, Feehally J, Barratt J (2008) B-cell O-galactosyltransferase activity, and expression of O-glycosylation genes in bone marrow in IgA nephropathy. Kidney Int 73:1128–1136

    Article  PubMed  CAS  Google Scholar 

  126. Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM (2002) Cloning and expression of human core 1 β1,3-galactosyltransferase. J Biol Chem 277:178–186

    Article  PubMed  CAS  Google Scholar 

  127. Lin X, Ding J, Zhu L, Shi S, Jiang L, Zhao M, Zhang H (2009) Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transplant 24:3372–3375

    Article  PubMed  CAS  Google Scholar 

  128. Qin W, Zhou Q, Yang LC, Li Z, Su BH, Luo H, Fan JM (2005) Peripheral B lymphocyte β1,3-galactosyltransferase and chaperone expression in immunoglobulin A nephropathy. J Intern Med 258:467–477

    Article  PubMed  CAS  Google Scholar 

  129. Yamada K, Kobayashi N, Ikeda T, Suzuki Y, Tsuge T, Horikoshi S, Emancipator SN, Tomino Y (2010) Down-regulation of core 1 β1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 25:3890–3897

    Article  PubMed  CAS  Google Scholar 

  130. Itoh A, Iwase H, Takatani T, Nakamura I, Hayashi M, Oba K, Hiki Y, Kobayashi Y, Okamoto M (2003) Tonsillar IgA1 as a possible source of hypoglycosylated IgA1 in the serum of IgA nephropathy patients. Nephrol Dial Transplant 18:1108–1114

    Article  PubMed  CAS  Google Scholar 

  131. Tokuda M, Shimizu J, Sugiyama N, Kiryu T, Matsuoka K, Sasaki O, Fukuda K, Hatase O, Monden H (1996) Direct evidence of the production of IgA by tonsillar lymphocytes and the binding of IgA to the glomerular mesangium of IgA nephropathy patients. Acta Otolaryngol 523:182–184

    CAS  Google Scholar 

  132. Iwasaki H, Zhang Y, Tachibana K, Gotoh M, Kikuchi N, Kwon YD, Togayachi A, Kudo T, Kubota T, Narimatsu H (2003) Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-α-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem 278:5613–5621

    Article  PubMed  CAS  Google Scholar 

  133. Wandall HH, Irazoqui F, Tarp MA, Bennett EP, Mandel U, Takeuchi H, Kato K, Irimura T, Suryanarayanan G, Hollingsworth MA, Clausen H (2007) The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology 17:374–387

    Article  PubMed  CAS  Google Scholar 

  134. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG, Julian BA (2011) The pathophysiology of IgA nephropathy. J Am Soc Nephrol 22:1795–1803

    Article  PubMed  CAS  Google Scholar 

  135. Julien S, Krzewinski-Recchi MA, Harduin-Lepers A, Gouyer V, Huet G, Le Bourhis X, Delannoy P (2001) Expression of sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac: GalNAc α2,6-sialyltransferase (ST6GalNAc I) cDNA. Glycoconj J 18:883–893

    Article  PubMed  CAS  Google Scholar 

  136. Ju T, Cummings RD (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase. Proc Natl Acad Sci USA 99:16613–16618

    Article  PubMed  CAS  Google Scholar 

  137. Kiryluk K, Julian BA, Wyatt RJ, Scolari F, Zhang H, Novak J, Gharavi AG (2010) Genetic studies of IgA nephropathy: past, present, and future. Pediatr Nephrol 25:2257–2268

    Article  PubMed  Google Scholar 

  138. Allen AC (1995) Abnormal glycosylation of IgA: is it related to the pathogenesis of IgA nephropathy? Nephrol Dial Transplant 10:1121–1124

    PubMed  CAS  Google Scholar 

  139. Camilla R, Suzuki H, Dapra V, Loiacono E, Peruzzi L, Amore A, Ghiggeri GM, Mazzucco G, Scolari F, Gharavi AG, Appel GB, Troyanov S, Novak J, Julian BA, Coppo R (2011) Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol 6:1903–1911

    Article  PubMed  CAS  Google Scholar 

  140. Suzuki H, Fun R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J (2009) Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119:1668–1677

    PubMed  CAS  Google Scholar 

  141. Novak J, Vu HL, Novak L, Julian BA, Mestecky J, Tomana M (2002) Interactions of human mesangial cells with IgA and IgA-containing circulating immune complexes. Kidney Int 62:465–475

    Article  PubMed  CAS  Google Scholar 

  142. Novak J, Tomana M, Matousovic K, Brown R, Hall S, Novak L, Julian BA, Wyatt RJ, Mestecky J (2005) IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 67:504–513

    Article  PubMed  CAS  Google Scholar 

  143. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381:751–758

    Article  PubMed  CAS  Google Scholar 

  144. McKean D, Huppi K, Bell M, Staudt L, Gerhard W, Weigert M (1984) Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc Natl Acad Sci USA 81:3180–3184

    Article  PubMed  CAS  Google Scholar 

  145. Lomax-Smith JD, Woodroffe AJ, Clarkson AR, Seymour AE (1985) IgA nephropathy-accumulated experience and current concepts. Pathology 17:219–224

    Article  PubMed  CAS  Google Scholar 

  146. Coppo R, Amore A (2004) Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int 65:1544–1547

    Article  PubMed  CAS  Google Scholar 

  147. Chen A, Chen WP, Sheu LF, Lin CY (1994) Pathogenesis of IgA nephropathy: in vitro activation of human mesangial cells by IgA immune complex leads to cytokine secretion. J Pathol 173:119–126

    Article  PubMed  CAS  Google Scholar 

  148. Gomez-Guerrero C, Alonso J, Lopez-Armada MJ, Ruiz-Ortega M, Gomez-Garre D, Alcazar R, Gonzalez E, Egido J (1995) Potential factors governing extracellular matrix production by mesangial cells: their relevance for the pathogenesis of IgA nephropathy. Contrib Nephrol 111:45–54

    PubMed  CAS  Google Scholar 

  149. Julian BA, Suzuki H, Mestecky J, Novak J (2009) Mecanismes en jeu dans la nephropathie A IgA. In: LeSavre P, Drueke T, LeGendre C, Niaudet P (eds) Actualites Nephrologiques Jean Hamburger, 50e annee, Hopital Necker 2009. Flammarion Medicine-Sciences, Paris, France, pp 241–257

    Google Scholar 

  150. Mestecky J, Suzuki H, Yanagihara T, Moldoveanu Z, Tomana M, Matousovic K, Julian BA, Novak J (2007) IgA nephropathy: current views of immune complex formation. Contrib Nephrol 157:56–63

    PubMed  CAS  Google Scholar 

  151. Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K, Renfrow MB, Novak L, Wyatt RJ, Novak J (2008) The role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Pres Res 31:29–37

    Article  CAS  Google Scholar 

  152. Moura IC, Centelles MN, Arcos-Fajardo M, Malheiros DM, Collawn JF, Cooper MD, Monteiro RC (2001) Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 194:417–425

    Article  PubMed  CAS  Google Scholar 

  153. Moura IC, Arcos-Fajardo M, Sadaka C, Leroy V, Benhamou M, Novak J, Vrtovsnik F, Haddad E, Chintalacharuvu KR, Monteiro RC (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 15:622–634

    Article  PubMed  CAS  Google Scholar 

  154. Barratt J, Greer MR, Pawluczyk IZ, Allen AC, Bailey EM, Buck KS, Feehally J (2000) Identification of a novel Fcα receptor expressed by mesangial cells. Kidney Int 57:1936–1948

    Article  PubMed  CAS  Google Scholar 

  155. Barratt J, Feehally J, Smith AC (2004) Pathogenesis of IgA nephropathy. Semin Nephrol 24:197–217

    Article  PubMed  CAS  Google Scholar 

  156. Gomez-Guerrero C, Gonzales E, Egido J (1993) Evidence for a specific IgA receptor in rat and human mesangial cells. J Immunol 151:7172–7181

    PubMed  CAS  Google Scholar 

  157. Gomez-Guerrero C, Duque N, Egido J (1996) Stimulation of Fcα receptors induces tyrosine phosphorylation of phospholipase C-γ1, phosphatidylinositol phosphate hydrolysis, and Ca2+ mobilization in rat and human mesangial cells. J Immunol 156:4369–4376

    PubMed  CAS  Google Scholar 

  158. Leung JCK, Tsang AWL, Chan DTM, Lai KN (2000) Absence of CD89, polymeric immunoglobulin receptor, and asialoglycoprotein receptor on human mesangial cells. J Am Soc Nephrol 11:241–249

    PubMed  CAS  Google Scholar 

  159. Leung JC, Tsang AW, Chan LY, Tang SC, Lam MF, Lai KN (2002) Size-dependent binding of IgA to HepG2, U937, and human mesangial cells. J Lab Clin Med 140:398–406

    Article  PubMed  CAS  Google Scholar 

  160. Leung JC, Tang SC, Chan LY, Tsang AW, Lan HY, Lai KN (2003) Polymeric IgA increases the synthesis of macrophage migration inhibitory factor by human mesangial cells in IgA nephropathy. Nephrol Dial Transplant 18:36–45

    Article  PubMed  CAS  Google Scholar 

  161. Leung JC, Tang SC, Chan LY, Chan WL, Lai KN (2008) Synthesis of TNF-α by mesangial cells cultured with polymeric anionic IgA—role of MAPK and NF-κB. Nephrol Dial Transplant 23:72–81

    Article  PubMed  CAS  Google Scholar 

  162. Moura IC, Arcos-Fajardo M, Gdoura A, Leroy V, Sadaka C, Mahlaoui N, Lepelletier Y, Vrtovsnik F, Haddad E, Benhamou M, Monteiro RC (2005) Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol 16:2667–2676

    Article  PubMed  CAS  Google Scholar 

  163. Monteiro RC, Van De Winkel JG (2003) IgA Fc receptors. Annu Rev Immunol 21:177–204

    Article  PubMed  CAS  Google Scholar 

  164. Monteiro RC (2007) Pathogenic role of IgA receptors in IgA nephropathy. Contrib Nephrol 157:64–69

    PubMed  CAS  Google Scholar 

  165. Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Menard S, Candalh C, Ben-Khalifa K, Dugave C, Tamouza H, van Niel G, Bouhnik Y, Lamarque D, Chaussade S, Malamut G, Cellier C, Cerf-Bensussan N, Monteiro RC, Heyman M (2008) Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 205:143–154

    Article  PubMed  CAS  Google Scholar 

  166. Kanamaru Y, Arcos-Fajardo M, Moura IC, Tsuge T, Cohen H, Essig M, Vrtovsnik F, Loirat C, Peuchmaur M, Beaudoin L, Launay P, Lehuen A, Blank U, Monteiro RC (2007) Fcα receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcRγ adaptor. Eur J Immunol 37:1116–1128

    Article  PubMed  CAS  Google Scholar 

  167. Haakenstad AO, Mannik M (1977) The biology of immune complexes. In: Talal N (ed) Autoimmunity genetic, immunologic, virologic, and clinical aspects. Academic, New York, pp 277–360

    Google Scholar 

  168. Glassock RJ (2011) The pathogenesis of IgA nephropathy. Curr Opin Nephrol Hypertens 20:153–160

    Article  PubMed  CAS  Google Scholar 

  169. Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Lai FM, Tang SC (2008) Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol 294:F945–F955

    Article  PubMed  CAS  Google Scholar 

  170. Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Tam KY, Xiao J, Lai FM, Tang SC (2009) Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol Dial Transplant 24:62–72

    Article  PubMed  CAS  Google Scholar 

  171. Frangione B, Wolfenstein-Todel C (1972) Partial duplication in the “hinge” region of IgA1 myeloma proteins. Proc Natl Acad Sci USA 69:3673–3676

    Article  PubMed  CAS  Google Scholar 

  172. Beerman I, Novak J, Wyatt RJ, Julian BA, Gharavi AG (2007) Genetics of IgA nephropathy. Nat Clin Pract Nephrol 3:325–338

    Article  PubMed  CAS  Google Scholar 

  173. Gharavi AG, Yan Y, Scolari F, Schena FP, Frasca GM, Ghiggeri GM, Cooper K, Amoroso A, Viola BF, Battini G, Caridi G, Canova C, Farhi A, Subramanian V, Nelson-Williams C, Woodford S, Julian BA, Wyatt RJ, Lifton RP (2000) IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23. Nature Genet 26:354–357

    Article  PubMed  CAS  Google Scholar 

  174. Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, Mestecky J, Novak J, Julian BA (2008) Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19:1008–1014

    Article  PubMed  Google Scholar 

  175. Izzi C, Sanna-Cherchi S, Prati E, Belleri R, Remedio A, Tardanico R, Foramitti M, Guerini S, Viola BF, Movilli E, Beerman I, Lifton R, Leone L, Gharavi A, Scolari F (2006) Familial aggregation of primary glomerulonephritis in an Italian population isolate: Valtrompia study. Kidney Int 69:1033–1040

    Article  PubMed  CAS  Google Scholar 

  176. Karnib HH, Sanna-Cherchi S, Zalloua PA, Medawar W, D’Agati VD, Lifton RP, Badr K, Gharavi AG (2007) Characterization of a large Lebanese family segregating IgA nephropathy. Nephrol Dial Transplant 22:772–777

    Article  PubMed  CAS  Google Scholar 

  177. Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, Novak J, Gharavi AG, Wyatt RJ (2011) Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch–Schönlein purpura nephritis. Kidney Int 80:79–87

    Article  PubMed  CAS  Google Scholar 

  178. Lavigne KA, Woodford SY, Barker CV, Julian BA, Novak J, Moldoveanu Z, Gharavi AG, Wyatt RJ (2010) Familial IgA nephropathy in southeastern Kentucky. Clin Nephrol 73:115–121

    PubMed  CAS  Google Scholar 

  179. Feehally J, Farrall M, Boland A, Gale DP, Gut I, Heath S, Kumar A, Peden JF, Maxwell PH, Morris DL, Padmanabhan S, Vyse TJ, Zawadzka A, Rees AJ, Lathrop M, Ratcliffe PJ (2010) HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol 21:1791–1797

    Article  PubMed  CAS  Google Scholar 

  180. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to Milan Tomana, a pioneer in the studies of immunoglobulin glycosylation, at the occasion of his 80th birthday. This study is supported in part by grants DK078244, DK082753, DK083663, DK075868, DK080301, DK077279, DK071802, and GM098539 from the National Institutes of Health and a grant from the IgA Nephropathy Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Novak.

Additional information

This article is published as part of the Special Issue on Glycosylation and Immunity [34:3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, J., Julian, B.A., Mestecky, J. et al. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol 34, 365–382 (2012). https://doi.org/10.1007/s00281-012-0306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0306-z

Keywords

Navigation