Skip to main content

Advertisement

Log in

Drosophila as a model system to study autophagy

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Originally identified as a response to starvation in yeast, autophagy is now understood to fulfill a variety of roles in higher eukaryotes, from the maintenance of cellular homeostasis to the cellular response to stress, starvation, and infection. Although genetics and biochemical studies in yeast have identified many components involved in autophagy, the findings that some of the essential components of the yeast pathway are missing in higher organisms underscore the need to study autophagy in more complex systems. This review focuses on the use of the fruitfly, Drosophila melanogaster as a model system for analysis of autophagy. Drosophila is an organism well-suited for genetic analysis and represents an intermediate between yeast and mammals with respect to conservation of the autophagy machinery. Furthermore, the complex biology and physiology of Drosophila presents an opportunity to model human diseases in a tissue specific and analogous context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arsham AM, Neufeld TP (2009) A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS ONE 4(6):e6068

    Article  PubMed  CAS  Google Scholar 

  2. Batlevi Y, Martin DN, Pandey UB, Simon CR, Powers CM, Taylor JP, Baehrecke EH (2010) Dynein light chain 1 is required for autophagy, protein clearance, and cell death in Drosophila. Proc Natl Acad Sci USA 107(2):742–747

    Article  CAS  PubMed  Google Scholar 

  3. Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131(6):1137–1148

    Article  CAS  PubMed  Google Scholar 

  4. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin o allows listeria monocytogenes replication in macrophage vacuoles. Nature 451(7176):350–354

    Article  CAS  PubMed  Google Scholar 

  5. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  6. Chan EY, Kir S, Tooze SA (2007) SiRNA screening of the kinome identifies ulk1 as a multidomain modulator of autophagy. J Biol Chem 282(35):25464–25474

    Article  CAS  PubMed  Google Scholar 

  7. Chang YY, Neufeld TP (2009) An atg1/atg13 complex with multiple roles in tor-mediated autophagy regulation. Mol Biol Cell 20(7):2004–2014

    Article  CAS  PubMed  Google Scholar 

  8. Chang YY, Neufeld TP (2010) Autophagy takes flight in Drosophila. FEBS Lett 584(7):1342–1349

    Article  CAS  PubMed  Google Scholar 

  9. Cherry S (2009) Vsv infection is sensed by Drosophila, attenuates nutrient signaling, and thereby activates antiviral autophagy. Autophagy 5(7):1062–1063

    Article  PubMed  Google Scholar 

  10. Chittaranjan S, McConechy M, Hou YC, Freeman JD, Devorkin L, Gorski SM (2009) Steroid hormone control of cell death and cell survival: Molecular insights using RNAi. PLoS Genet 5(2):e1000379

    Article  PubMed  CAS  Google Scholar 

  11. Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA 97(12):6499–6503

    Article  CAS  PubMed  Google Scholar 

  12. Corradetti MN, Guan KL (2006) Upstream of the mammalian target of rapamycin: do all roads pass through mtor? Oncogene 25(48):6347–6360

    Article  CAS  PubMed  Google Scholar 

  13. Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263(1–2):55–72

    Article  CAS  PubMed  Google Scholar 

  14. Cumming RC, Simonsen A, Finley KD (2008) Quantitative analysis of autophagic activity in Drosophila neural tissues by measuring the turnover rates of pathway substrates. Methods Enzymol 451:639–651

    Article  CAS  PubMed  Google Scholar 

  15. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64

    Article  CAS  PubMed  Google Scholar 

  16. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6):527–549

    Article  CAS  PubMed  Google Scholar 

  17. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448(7150):151–156

    Article  CAS  PubMed  Google Scholar 

  18. Dutta S, Baehrecke EH (2008) Warts is required for pi3k-regulated growth arrest, autophagy, and autophagic cell death in Drosophila. Curr Biol 18(19):1466–1475

    Article  CAS  PubMed  Google Scholar 

  19. Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stenmark H, Simonsen A, Yamamoto A (2010) The selective macroautophagic degradation of aggregated proteins requires the pi3p-binding protein alfy. Mol Cell 38(2):265–279

    Article  CAS  PubMed  Google Scholar 

  20. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148):1121–1125

    CAS  PubMed  Google Scholar 

  21. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008) The atg16l complex specifies the site of lc3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19(5):2092–2100

    Article  CAS  PubMed  Google Scholar 

  22. Funakoshi T, Matsuura A, Noda T, Ohsumi Y (1997) Analyses of apg13 gene involved in autophagy in yeast, saccharomyces cerevisiae. Gene 192(2):207–213

    Article  CAS  PubMed  Google Scholar 

  23. Ganley IG, du Lam H, Wang J, Ding X, Chen S, Jiang X (2009) Ulk1.Atg13.Fip200 complex mediates mtor signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305

    Article  CAS  PubMed  Google Scholar 

  24. Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA (2003) A sage approach to discovery of genes involved in autophagic cell death. Curr Biol 13(4):358–363

    Article  CAS  PubMed  Google Scholar 

  25. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766

    Article  CAS  PubMed  Google Scholar 

  26. Hanson KA, Kim SH, Wassarman DA, Tibbetts RS (2010) Ubiquilin modifies tdp-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (als). J Biol Chem 285(15):11068–11072

    Article  CAS  PubMed  Google Scholar 

  27. Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N (2008) Fip200, a ulk-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181(3):497–510

    Article  CAS  PubMed  Google Scholar 

  28. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  Google Scholar 

  29. Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL (2003) A single protease, apg4b, is specific for the autophagy-related ubiquitin-like proteins gate-16, map1-lc3, gabarap, and apg8l. J Biol Chem 278(51):51841–51850

    Article  CAS  PubMed  Google Scholar 

  30. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mtorc1 association with the ulk1-atg13-fip200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991

    Article  CAS  PubMed  Google Scholar 

  31. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009) Atg101, a novel mammalian autophagy protein interacting with atg13. Autophagy 5(7):973–979

    Article  CAS  PubMed  Google Scholar 

  32. Hou YC, Chittaranjan S, Barbosa SG, McCall K, Gorski SM (2008) Effector caspase dcp-1 and iap protein bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 182(6):1127–1139

    Article  CAS  PubMed  Google Scholar 

  33. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408(6811):488–492

    Article  CAS  PubMed  Google Scholar 

  34. Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian atg14 and uvrag. Mol Biol Cell 19(12):5360–5372

    Article  CAS  PubMed  Google Scholar 

  35. Jacinto E, Hall MN (2003) Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4(2):117–126

    Article  CAS  PubMed  Google Scholar 

  36. Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3(5):e156

    Article  PubMed  CAS  Google Scholar 

  37. Juhasz G, Csikos G, Sinka R, Erdelyi M, Sass M (2003) The Drosophila homolog of aut1 is essential for autophagy and development. FEBS Lett 543(1–3):154–158

    Article  CAS  PubMed  Google Scholar 

  38. Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21(23):3061–3066

    Article  CAS  PubMed  Google Scholar 

  39. Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neufeld TP (2008) The class iii pi(3)k vps34 promotes autophagy and endocytosis but not tor signaling in Drosophila. J Cell Biol 181(4):655–666

    Article  CAS  PubMed  Google Scholar 

  40. Juhasz G, Puskas LG, Komonyi O, Erdi B, Maroy P, Neufeld TP, Sass M (2007) Gene expression profiling identifies fkbp39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 14(6):1181–1190

    Article  CAS  PubMed  Google Scholar 

  41. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTor regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  CAS  PubMed  Google Scholar 

  42. Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y (2005) Atg17 functions in cooperation with atg1 and atg13 in yeast autophagy. Mol Biol Cell 16(5):2544–2553

    Article  CAS  PubMed  Google Scholar 

  43. Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y (2007) Cis1/atg31 is required for autophagosome formation in saccharomyces cerevisiae. Biochem Biophys Res Commun 356(2):405–410

    Article  CAS  PubMed  Google Scholar 

  44. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) Lc3, gabarap and gate16 localize to autophagosomal membrane depending on form-ii formation. J Cell Sci 117(Pt 13):2805–2812

    Article  CAS  PubMed  Google Scholar 

  45. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an apg1 protein kinase complex. J Cell Biol 150(6):1507–1513

    Article  CAS  PubMed  Google Scholar 

  46. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–237

    Article  CAS  PubMed  Google Scholar 

  47. Kametaka S, Matsuura A, Wada Y, Ohsumi Y (1996) Structural and functional analyses of apg5, a gene involved in autophagy in yeast. Gene 178(1–2):139–143

    Article  CAS  PubMed  Google Scholar 

  48. Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and apg6/vps30p form a protein complex essential for autophagy in the yeast, saccharomyces cerevisiae. J Biol Chem 273(35):22284–22291

    Article  CAS  PubMed  Google Scholar 

  49. Kawamata T, Kamada Y, Kabeya Y, Sekito T, Ohsumi Y (2008) Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19(5):2039–2050

    Article  CAS  PubMed  Google Scholar 

  50. Kawamata T, Kamada Y, Suzuki K, Kuboshima N, Akimatsu H, Ota S, Ohsumi M, Ohsumi Y (2005) Characterization of a novel autophagy-specific gene, atg29. Biochem Biophys Res Commun 338(4):1884–1889

    Article  CAS  PubMed  Google Scholar 

  51. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in saccharomyces cerevisiae. J Cell Biol 152(3):519–530

    Article  CAS  PubMed  Google Scholar 

  52. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of torc1 by rag gtpases in nutrient response. Nat Cell Biol 10(8):935–945

    Article  CAS  PubMed  Google Scholar 

  53. Kim YI, Ryu T, Lee J, Heo YS, Ahnn J, Lee SJ, Yoo O (2010) A genetic screen for modifiers of Drosophila caspase dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes. BMC Cell Biol 11:9

    Article  PubMed  CAS  Google Scholar 

  54. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of apg8/aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151(2):263–276

    Article  CAS  PubMed  Google Scholar 

  55. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5(4):539–545

    Article  CAS  PubMed  Google Scholar 

  56. Kohler K, Brunner E, Guan XL, Boucke K, Greber UF, Mohanty S, Barth JM, Wenk MR, Hafen E (2009) A combined proteomic and genetic analysis identifies a role for the lipid desaturase desat1 in starvation-induced autophagy in Drosophila. Autophagy 5(7):980–990

    Article  CAS  PubMed  Google Scholar 

  57. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036

    Article  CAS  PubMed  Google Scholar 

  58. Kuma A, Matsui M, Mizushima N (2007) Lc3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of lc3 localization. Autophagy 3(4):323–328

    CAS  PubMed  Google Scholar 

  59. Kuma A, Mizushima N, Ishihara N, Ohsumi Y (2002) Formation of the approximately 350-kda apg12-apg5.Apg16 multimeric complex, mediated by apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277(21):18619–18625

    Article  CAS  PubMed  Google Scholar 

  60. Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH (2003) Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 13(4):350–357

    Article  CAS  PubMed  Google Scholar 

  61. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  62. Li L, Kim E, Yuan H, Inoki K, Goraksha-Hicks P, Schiesher RL, Neufeld TP, Guan KL (2010) Regulation of mtorc1 by the rab and arf gtpases. J Biol Chem 285(26):19705–19709

    Article  CAS  PubMed  Google Scholar 

  63. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel beclin1-binding protein uvrag. Nat Cell Biol 8(7):688–699

    Article  CAS  PubMed  Google Scholar 

  64. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal sindbis virus encephalitis by beclin, a novel bcl-2-interacting protein. J Virol 72(11):8586–8596

    CAS  PubMed  Google Scholar 

  65. Lindmo K, Brech A, Finley KD, Gaumer S, Contamine D, Rusten TE, Stenmark H (2008) The pi 3-kinase regulator vps15 is required for autophagic clearance of protein aggregates. Autophagy 4(4):500–506

    CAS  PubMed  Google Scholar 

  66. Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM (2009) Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS ONE 4(1):e4201

    Article  PubMed  Google Scholar 

  67. Martin DN, Balgley B, Dutta S, Chen J, Rudnick P, Cranford J, Kantartzis S, DeVoe DL, Lee C, Baehrecke EH (2007) Proteomic analysis of steroid-triggered autophagic programmed cell death during Drosophila development. Cell Death Differ 14(5):916–923

    CAS  PubMed  Google Scholar 

  68. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21(11):1367–1381

    Article  CAS  PubMed  Google Scholar 

  69. Matsuura A, Tsukada M, Wada Y, Ohsumi Y (1997) Apg1p, a novel protein kinase required for the autophagic process in saccharomyces cerevisiae. Gene 192(2):245–250

    Article  CAS  PubMed  Google Scholar 

  70. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301(5638):1387–1391

    Article  CAS  PubMed  Google Scholar 

  71. Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human atg13 binding protein, atg101, interacts with ulk1 and is essential for macroautophagy. Autophagy 5(5):649–662

    Article  CAS  PubMed  Google Scholar 

  72. Meyer-Morse N, Robbins JR, Rae CS, Mochegova SN, Swanson MS, Zhao Z, Virgin HW, Portnoy D (2010) Listeriolysin o is necessary and sufficient to induce autophagy during listeria monocytogenes infection. PLoS One 5(1):e8610

    Article  PubMed  CAS  Google Scholar 

  73. Mizushima N (2010) The role of the atg1/ulk1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139

    Article  CAS  PubMed  Google Scholar 

  74. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse apg16l, a novel wd-repeat protein, targets to the autophagic isolation membrane with the apg12-apg5 conjugate. J Cell Sci 116(Pt 9):1679–1688

    Article  CAS  PubMed  Google Scholar 

  75. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398

    Article  CAS  PubMed  Google Scholar 

  76. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27(6):421–429

    Article  PubMed  Google Scholar 

  77. Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998) A new protein conjugation system in human. The counterpart of the yeast apg12p conjugation system essential for autophagy. J Biol Chem 273(51):33889–33892

    Article  CAS  PubMed  Google Scholar 

  78. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111

    Article  CAS  PubMed  Google Scholar 

  79. Nair U, Klionsky DJ (2005) Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J Biol Chem 280(51):41785–41788

    Article  CAS  PubMed  Google Scholar 

  80. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group a streptococcus. Science 306(5698):1037–1040

    Article  CAS  PubMed  Google Scholar 

  81. Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, Cavallaro A, Booker M, Pfeiffer B, Markstein M, Wang H, Villalta C, Laverty T, Perkins L, Perrimon N (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182(4):1089–1100

    Article  CAS  PubMed  Google Scholar 

  82. Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, Villalta C, Booker M, Perkins L, Perrimon N (2008) Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 5(1):49–51

    Article  CAS  PubMed  Google Scholar 

  83. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966

    Article  CAS  PubMed  Google Scholar 

  84. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2(3):211–216

    Article  CAS  PubMed  Google Scholar 

  85. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell 122(6):927–939

    Article  CAS  PubMed  Google Scholar 

  86. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in ht-29 cells. J Biol Chem 275(2):992–998

    Article  CAS  PubMed  Google Scholar 

  87. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    CAS  PubMed  Google Scholar 

  88. Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O’Kane CJ, Brown SD, Rubinsztein DC (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37(7):771–776

    Article  CAS  PubMed  Google Scholar 

  89. Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121(Pt 10):1649–1660

    Article  CAS  PubMed  Google Scholar 

  90. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mtor induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of huntington disease. Nat Genet 36(6):585–595

    Article  CAS  PubMed  Google Scholar 

  91. Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the pi3k pathway. Dev Cell 7(2):179–192

    Article  CAS  PubMed  Google Scholar 

  92. Saeki K, Yuo A, Okuma E, Yazaki Y, Susin SA, Kroemer G, Takaku F (2000) Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic hl60 cells. Cell Death Differ 7(12):1263–1269

    Article  CAS  PubMed  Google Scholar 

  93. Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17(1):1–11

    Article  CAS  PubMed  Google Scholar 

  94. Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7(2):167–178

    Article  CAS  PubMed  Google Scholar 

  95. Shelly S, Lukinova N, Bambina S, Berman A, Cherry S (2009) Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30(4):588–598

    Article  CAS  PubMed  Google Scholar 

  96. Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18(19):5234–5241

    Article  CAS  PubMed  Google Scholar 

  97. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4(2):176–184

    CAS  PubMed  Google Scholar 

  98. Simonsen A, Cumming RC, Finley KD (2007) Linking lysosomal trafficking defects with changes in aging and stress response in Drosophila. Autophagy 3(5):499–501

    CAS  PubMed  Google Scholar 

  99. Simonsen A, Tooze SA (2009) Coordination of membrane events during autophagy by multiple class III pi3-kinase complexes. J Cell Biol 186(6):773–782

    Article  CAS  PubMed  Google Scholar 

  100. Stromhaug PE, Reggiori F, Guan J, Wang CW, Klionsky DJ (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of atg8 during uptake of aminopeptidase i by selective autophagy. Mol Biol Cell 15(8):3553–3566

    Article  CAS  PubMed  Google Scholar 

  101. Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of barkor as a mammalian autophagy-specific factor for beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 105(49):19211–19216

    Article  CAS  PubMed  Google Scholar 

  102. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, Wang HG (2007) Bif-1 interacts with beclin 1 through uvrag and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151

    Article  CAS  PubMed  Google Scholar 

  103. Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119(2):301–311

    Article  CAS  PubMed  Google Scholar 

  104. Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E (1999) Apg7p/cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10(5):1367–1379

    CAS  PubMed  Google Scholar 

  105. Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, Kominami E (2006) Atg8l/apg8l is the fourth mammalian modifier of mammalian atg8 conjugation mediated by human atg4b, atg7 and atg3. FEBS J 273(11):2553–2562

    Article  CAS  PubMed  Google Scholar 

  106. Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E (2002) Human apg3p/aut1p homologue is an authentic e2 enzyme for multiple substrates, gate-16, gabarap, and map-lc3, and facilitates the conjugation of hapg12p to hapg5p. J Biol Chem 277(16):13739–13744

    Article  CAS  PubMed  Google Scholar 

  107. Tanida I, Tanida-Miyake E, Nishitani T, Komatsu M, Yamazaki H, Ueno T, Kominami E (2002) Murine apg12p has a substrate preference for murine apg7p over three apg8p homologs. Biochem Biophys Res Commun 292(1):256–262

    Article  CAS  PubMed  Google Scholar 

  108. Thumm M, Kadowaki T (2001) The loss of Drosophila apg4/aut2 function modifies the phenotypes of cut and notch signaling pathway mutants. Mol Genet Genomics 266(4):657–663

    Article  CAS  PubMed  Google Scholar 

  109. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  CAS  PubMed  Google Scholar 

  110. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  111. Yan J, Kuroyanagi H, Kuroiwa A, Matsuda Y, Tokumitsu H, Tomoda T, Shirasawa T, Muramatsu M (1998) Identification of mouse ulk1, a novel protein kinase structurally related to C. Elegans unc-51. Biochem Biophys Res Commun 246(1):222–227

    Article  CAS  PubMed  Google Scholar 

  112. Yan J, Kuroyanagi H, Tomemori T, Okazaki N, Asato K, Matsuda Y, Suzuki Y, Ohshima Y, Mitani S, Masuho Y, Shirasawa T, Muramatsu M (1999) Mouse ulk2, a novel member of the unc-51-like protein kinases: unique features of functional domains. Oncogene 18(43):5850–5859

    Article  CAS  PubMed  Google Scholar 

  113. Yan L, Sadoshima J, Vatner DE, Vatner SF (2006) Autophagy: a novel protective mechanism in chronic ischemia. Cell Cycle 5(11):1175–1177

    Article  CAS  PubMed  Google Scholar 

  114. Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, Yoshimori T, Kurata S (2008) Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9(8):908–916

    Article  CAS  PubMed  Google Scholar 

  115. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552

    Article  CAS  PubMed  Google Scholar 

  116. Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, Kakizuka A, Sztul E, Chakraborty T, Sasakawa C (2009) Listeria monocytogenes acta-mediated escape from autophagic recognition. Nat Cell Biol 11(10):1233–1240

    Article  CAS  PubMed  Google Scholar 

  117. Yuan J, Lipinski M, Degterev A (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40(2):401–413

    Article  CAS  PubMed  Google Scholar 

  118. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01 AR057352) and the Howard Hughes Medical Institute.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Perrimon.

Additional information

This article is published as part of the special issue on Autophagy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zirin, J., Perrimon, N. Drosophila as a model system to study autophagy. Semin Immunopathol 32, 363–372 (2010). https://doi.org/10.1007/s00281-010-0223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-010-0223-y

Keywords

Navigation