Skip to main content

Advertisement

Log in

ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment.

Results

A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest.

Conclusion

Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stordal BK, Davey MW, Davey RA (2006) Oxaliplatin induces drug resistance more rapidly than cisplatin in H69 small cell lung cancer cells. Cancer Chemother Pharmacol 58:256–265

    Article  PubMed  CAS  Google Scholar 

  2. Stordal B, Peters G, Davey R (2006) Similar chromosomal changes in cisplatin and oxaliplatin-resistant sublines of the H69 SCLC cell line are not associated with platinum resistance. Genes Chromosomes Cancer 45:1094–1105

    Article  PubMed  CAS  Google Scholar 

  3. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  4. Henness S, Davey MW, Harvie RM, Davey RA (2002) Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIalpha expression. Int J Radiat Oncol Biol Phys 54:895–902

    PubMed  CAS  Google Scholar 

  5. Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 58:1120–1123

    PubMed  CAS  Google Scholar 

  6. McDonald ER III, Wu GS, Waldman T, el Deiry WS (1996) Repair Defect in p21 WAF1/CIP1 -/- human cancer cells. Cancer Res 56:2250–2255

    PubMed  CAS  Google Scholar 

  7. Preisler HD, Gopal V (1994) Regrowth resistance in leukemia and lymphoma: the need for a new system to classify treatment failure and for new approaches to treatment. Leuk Res 18:149–160

    Article  PubMed  CAS  Google Scholar 

  8. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  PubMed  CAS  Google Scholar 

  9. Child ES, Mann DJ (2006) The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 5:1313–1319

    PubMed  CAS  Google Scholar 

  10. Altaha R, Liang X, Yu JJ, Reed E (2004) Excision repair cross complementing-group 1: gene expression and platinum resistance. Int J Mol Med 14:959–970

    PubMed  CAS  Google Scholar 

  11. Yu JJ, Mu C, Dabholkar M, Guo Y, Bostick-Bruton F, Reed E (1998) Alternative splicing of ERCC1 and cisplatin-DNA adduct repair in human tumor cell lines. Int J Mol Med 1:617–620

    PubMed  CAS  Google Scholar 

  12. Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S (2000) The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 20:6476–6482

    Article  PubMed  CAS  Google Scholar 

  13. Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21:2858–2866

    Article  PubMed  CAS  Google Scholar 

  14. Yonetani Y, Hochegger H, Sonoda E, Shinya S, Yoshikawa H, Takeda S, Yamazoe M (2005) Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Res 33:4544–4552

    Article  PubMed  CAS  Google Scholar 

  15. Havre PA, Rice M, Ramos R, Kmiec EB (2000) HsRec2/Rad51L1, a protein influencing cell cycle progression, has protein kinase activity. Exp Cell Res 254:33–44

    Article  PubMed  CAS  Google Scholar 

  16. Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, Ropers HH, Sedivy JM, Golub EI, Fritz E, Haaf T (2002) Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 115:153–164

    PubMed  CAS  Google Scholar 

  17. Russell JS, Brady K, Burgan WE, Cerra MA, Oswald KA, Camphausen K, Tofilon PJ (2003) Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 63:7377–7383

    PubMed  CAS  Google Scholar 

  18. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  19. Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715

    Article  PubMed  CAS  Google Scholar 

  20. Qin LF, Ng IO (2001) Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells. Cancer Lett 172:7–15

    Article  PubMed  CAS  Google Scholar 

  21. Lincet H, Poulain L, Remy JS, Deslandes E, Duigou F, Gauduchon P, Staedel C (2000) The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett 161:17–26

    Article  PubMed  CAS  Google Scholar 

  22. Hensel CH, Xiang RH, Sakaguchi AY, Naylor SL (1991) Use of the single strand conformation polymorphism technique and PCR to detect p53 gene mutations in small cell lung cancer. Oncogene 6:1067–1071

    PubMed  CAS  Google Scholar 

  23. Qin LF, Ng IO (2002) Induction of apoptosis by cisplatin and its effect on cell cycle-related proteins and cell cycle changes in hepatoma cells. Cancer Lett 175:27–38

    Article  PubMed  CAS  Google Scholar 

  24. Hata T, Yamamoto H, Ngan CY, Koi M, Takagi A, Damdinsuren B, Yasui M, Fujie Y, Matsuzaki T, Hemmi H, Xu X, Kitani K, Seki Y, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2005) Role of p21waf1/cip1 in effects of oxaliplatin in colorectal cancer cells. Mol Cancer Ther 4:1585–1594

    Article  PubMed  CAS  Google Scholar 

  25. Amati B, Alevizopoulos K, Vlach J (1998) Myc and the cell cycle. Front Biosci d250–d268

  26. Poulain L, Lincet H, Duigou F, Deslandes E, Sichel F, Gauduchon P, Staedel C (1998) Acquisition of chemoresistance in a human ovarian carcinoma cell is linked to a defect in cell cycle control. Int J Cancer 78:454–463

    Article  PubMed  CAS  Google Scholar 

  27. Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol 53:3–11

    Article  PubMed  Google Scholar 

  28. Lord RVN, Brabender J, Gandara D, Alberola V, Camps C, Domine M, Cardenal F, Sanchez JM, Gumerlock PH, Taron M, Sanchez JJ, Danenberg KD, Danenberg PV, Rosell R (2002) Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 8:2286–2291

    PubMed  CAS  Google Scholar 

  29. Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L, Pignon JP, Tursz T, Le Chevalier T, Soria JC, LT BIA (2006) I, DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991

    Article  PubMed  CAS  Google Scholar 

  30. Dabholkar M, Vionnet J, Bostick-Bruton F, Yu JJ, Reed E (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 94:703–708

    Article  PubMed  CAS  Google Scholar 

  31. Napieralski R, Ott K, Kremer M, Specht K, Vogelsang H, Becker K, Muller M, Lordick F, Fink U, Rudiger SJ, Hofler H, Keller G (2005) Combined GADD45A and thymidine phosphorylase expression levels predict response and survival of neoadjuvant-treated gastric cancer patients. Clin Cancer Res 11:3025–3031

    Article  PubMed  CAS  Google Scholar 

  32. Wachters FM, Wong LS, Timens W, Kampinga HH, Groen HJ (2005) ERCC1, hRad51, and BRCA1 protein expression in relation to tumour response and survival of stage III/IV NSCLC patients treated with chemotherapy. Lung Cancer 50:211–219

    Article  PubMed  CAS  Google Scholar 

  33. Rosell R, Felip E, Taron M, Majo J, Mendez P, Sanchez-Ronco M, Queralt C, Sanchez JJ, Maestre J (2004) Gene expression as a predictive marker of outcome in stage IIB-IIIA-IIIB non-small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin Cancer Res 10:4215s–4219s

    Article  PubMed  CAS  Google Scholar 

  34. Bepler G, Kusmartseva I, Sharma S, Gautam A, Cantor A, Sharma A, Simon G (2006) RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J Clin Oncol 24:4731–4737

    Article  PubMed  CAS  Google Scholar 

  35. Darcy KM, Tian C, Reed E (2007) A Gynecologic Oncology Group study of platinum-DNA adducts and excision repair cross-complementation group 1 expression in optimal, stage III epithelial ovarian cancer treated with platinum-taxane chemotherapy. Cancer Res 67:4474–4481

    Article  PubMed  CAS  Google Scholar 

  36. Nunez F, Chipchase MD, Clarke AR, Melton DW (2000) Nucleotide excision repair gene (ERCC1) deficiency causes G2 arrest in hepatocytes and a reduction in liver binucleation: the role of p53 and p21. FASEB J 14:1073–1082

    PubMed  CAS  Google Scholar 

  37. Weeda G, Donker I, de Wit J, Morreau H, Janssens R, Vissers CJ, Nigg A, van Steeg H, Bootsma D, Hoeijmakers JH (1997) Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 7:427–439

    Google Scholar 

  38. Havre PA, Rice MC, Noe M, Kmiec EB (1998) The human REC2/RAD51B gene acts as a DNA damage sensor by inducing G1 delay and hypersensitivity to ultraviolet irradiation. Cancer Res 58:4733–4739

    PubMed  CAS  Google Scholar 

  39. Chang IY, Kim MH, Kim BH, Lee DY, Kim SH, Kim HY, You HJ (2005) Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin. Biochem Biophys Res Commun 327:225–233

    Article  PubMed  CAS  Google Scholar 

  40. Melton DW, Ketchen AM, Nunez F, Bonatti-Abbondandolo S, Abbondandolo A, Squires S, Johnson RT (1998) Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination. J Cell Sci 111:395–404

    PubMed  CAS  Google Scholar 

  41. Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM, Nairn RS, Wilson JH (2000) Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 28:3771–3778

    Article  PubMed  CAS  Google Scholar 

  42. Richardson C, Stark JM, Ommundsen M, Jasin M (2004) Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene 23:546–553

    Article  PubMed  CAS  Google Scholar 

  43. Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235

    Article  PubMed  CAS  Google Scholar 

  44. Syljuasen RG, Jensen S, Bartek J, Lukas J (2006) Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66:10253–10257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Nghia Le, Laura Castelnoble and David Campbell from Sutton Laboratories at Royal North Shore Hospital for advice on real-time PCR. Thanks to Amy Au and Inge Stewart from Cancer Genetics, Kolling Insitute at Royal North Shore for providing the β-galactosidase plasmid and advice on the β-galactosidase assay. Thanks to Regina Bromley from Radiation Oncology at Royal North Shore Hospital for irradiating the cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Davey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stordal, B., Davey, R. ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair. Cancer Chemother Pharmacol 63, 661–672 (2009). https://doi.org/10.1007/s00280-008-0783-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0783-x

Keywords

Navigation