Skip to main content

Advertisement

Log in

Towards a new age in the treatment of multiple myeloma

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is an incurable disease characterized by the proliferation of end-stage B lymphocytes (plasma cells, PCs). As a consequence of myeloma growth in the bone marrow, a number of signaling pathways are activated that trigger malignant PC proliferation, escape from apoptosis, migration, and invasion. Thanks to new insights into the molecular pathogenesis of MM, novel approaches aimed at targeting these abnormally activated cascades have recently been developed and others are under study. These strategies include the inhibition of membrane receptor tyrosine kinases, inhibition of the proteasome/aggresome machinery, inhibition of histone deacetylases, inhibition of farnesyltransferases, targeting of molecular chaperones, and others. We will herein review and discuss these novel biological approaches with particular emphasis on those based on biochemical pathways which drive cell signaling. By providing the rationale for innovative therapeutic strategies, the above mechanisms represent targets for new compounds being tested in the management of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ludwig H (2005) Advances in biology and treatment of multiple myeloma. Ann Oncol 16(Suppl 2):ii106–ii112

    Article  PubMed  Google Scholar 

  2. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A et al (2003) Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 78(1):21–33

    PubMed  Google Scholar 

  3. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR et al (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 354(13):1362–1369

    Article  PubMed  CAS  Google Scholar 

  4. Harousseau JL (2005) Stem cell transplantation in multiple myeloma (0, 1, or 2). Curr Opin Oncol 17(2):93–98

    Article  PubMed  Google Scholar 

  5. Barlogie B, Kyle RA, Anderson KC, Greipp PR, Lazarus HM, Hurd DD et al (2006) Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 24(6):929–936

    Article  PubMed  CAS  Google Scholar 

  6. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20(22):4420–4427

    Article  PubMed  CAS  Google Scholar 

  7. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617

    Article  PubMed  CAS  Google Scholar 

  8. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  PubMed  CAS  Google Scholar 

  9. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187

    Article  PubMed  CAS  Google Scholar 

  10. Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K (1992) Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326–2335

    PubMed  CAS  Google Scholar 

  11. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64(4):1546–1558

    Article  PubMed  CAS  Google Scholar 

  12. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al (2003) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101(11):4569–4575

    Article  PubMed  CAS  Google Scholar 

  13. Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R (2001) Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 98(10):3082–3086

    Article  PubMed  CAS  Google Scholar 

  14. Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH et al (1995) Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86(11):4250–4256

    PubMed  CAS  Google Scholar 

  15. Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR et al (2006) Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108(5):1724–1732

    Article  PubMed  CAS  Google Scholar 

  16. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B et al (2006) High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cells 9(4):313–325

    Article  CAS  Google Scholar 

  17. Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Davila R, Gonzalez-Paz N et al (2003) Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 17(2):427–436

    Article  PubMed  CAS  Google Scholar 

  18. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C (2001) Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 98(7):2229–2238

    Article  PubMed  CAS  Google Scholar 

  19. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028

    Article  PubMed  CAS  Google Scholar 

  20. Bergsagel PL, Kuehl WM (2005) Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 23(26):6333–6338

    Article  PubMed  CAS  Google Scholar 

  21. Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E et al (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99(5):1745–1757

    Article  PubMed  CAS  Google Scholar 

  22. Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O’Connor SM et al (2003) Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 102(13):4504–4511

    Article  PubMed  CAS  Google Scholar 

  23. Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S et al (2005) Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 24(15):2461–2473

    Article  PubMed  CAS  Google Scholar 

  24. Duhrsen U, Hossfeld DK (1996) Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol 73(2):53–70

    Article  PubMed  CAS  Google Scholar 

  25. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93(5):1658–1667

    PubMed  CAS  Google Scholar 

  26. Mitsiades CS, Mitsiades N, Munshi NC, Anderson KC (2004) Focus on multiple myeloma. Cancer Cells 6(5):439–444

    Article  CAS  Google Scholar 

  27. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N et al (2001) Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98(20):11581–11586

    Article  PubMed  CAS  Google Scholar 

  28. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98(13):3527–3533

    Article  PubMed  CAS  Google Scholar 

  29. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S et al (2002) Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 100(6):2195–2202

    PubMed  CAS  Google Scholar 

  30. Zannettino AC, Farrugia AN, Kortesidis A, Manavis J, To LB, Martin SK et al (2005) Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 65(5):1700–1709

    Article  PubMed  CAS  Google Scholar 

  31. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494

    Article  PubMed  CAS  Google Scholar 

  32. Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E et al (2005) Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 106(9):3160–3165

    Article  PubMed  CAS  Google Scholar 

  33. Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC (1995) CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 85(7):1903–1912

    PubMed  CAS  Google Scholar 

  34. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA et al (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87(3):1104–1112

    PubMed  CAS  Google Scholar 

  35. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33):4519–4527

    Article  PubMed  CAS  Google Scholar 

  36. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM et al (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95(8):2630–2636

    PubMed  CAS  Google Scholar 

  37. Franchimont N, Rydziel S, Canalis E (2000) Transforming growth factor-beta increases interleukin-6 transcripts in osteoblasts. Bone 26(3):249–253

    Article  PubMed  CAS  Google Scholar 

  38. Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL et al (1997) IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 159(5):2212–2221

    PubMed  CAS  Google Scholar 

  39. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20

    Article  PubMed  CAS  Google Scholar 

  40. Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20(42):5991–6000

    Article  PubMed  CAS  Google Scholar 

  41. Pelliniemi TT, Irjala K, Mattila K, Pulkki K, Rajamaki A, Tienhaara A et al (1995) Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Finnish Leukemia Group. Blood 85(3):765–771

    PubMed  CAS  Google Scholar 

  42. Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G et al (2006) Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108(5):1698–1707

    Article  PubMed  CAS  Google Scholar 

  43. Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S et al (2004) Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103(8):3175–3184

    Article  PubMed  CAS  Google Scholar 

  44. Lichtenstein A, Berenson J, Norman D, Chang MP, Carlile A (1989) Production of cytokines by bone marrow cells obtained from patients with multiple myeloma. Blood 74(4):1266–1273

    PubMed  CAS  Google Scholar 

  45. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33):4519–4527

    Article  PubMed  CAS  Google Scholar 

  46. Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K et al (2004) VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 104(9):2886–2892

    Article  PubMed  CAS  Google Scholar 

  47. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98(2):428–435

    Article  PubMed  CAS  Google Scholar 

  48. Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D et al (2002) Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21(37):5673–5683

    Article  PubMed  CAS  Google Scholar 

  49. Qiang YW, Kopantzev E, Rudikoff S (2002) Insulinlike growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood 99(11):4138–4146

    Article  PubMed  CAS  Google Scholar 

  50. Tai YT, Podar K, Catley L, Tseng YH, Akiyama M, Shringarpure R et al (2003) Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res 63(18):5850–5858

    PubMed  CAS  Google Scholar 

  51. Qiang YW, Yao L, Tosato G, Rudikoff S (2004) Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 103(1):301–308

    Article  PubMed  CAS  Google Scholar 

  52. Gazitt Y, Akay C (2004) Mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4. Stem Cells 22(1):65–73

    Article  PubMed  CAS  Google Scholar 

  53. Costes V, Portier M, Lu ZY, Rossi JF, Bataille R, Klein B (1998) Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br J Haematol 103(4):1152–1160

    Article  PubMed  CAS  Google Scholar 

  54. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L et al (2005) Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 115(2):369–378

    Article  PubMed  CAS  Google Scholar 

  55. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101(2):690–698

    Article  PubMed  CAS  Google Scholar 

  56. Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM (2004) Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 10(11):1187–1189

    Article  PubMed  CAS  Google Scholar 

  57. Ishikawa H, Tsuyama N, Abroun S, Liu S, Li FJ, Taniguchi O et al (2002) Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood 99(6):2172–2178

    Article  PubMed  CAS  Google Scholar 

  58. Li FJ, Tsuyama N, Ishikawa H, Obata M, Abroun S, Liu S et al (2005) A rapid translocation of CD45RO but not CD45RA to lipid rafts in IL-6-induced proliferation in myeloma. Blood 105(8):3295–3302

    Article  PubMed  CAS  Google Scholar 

  59. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310

    Article  PubMed  CAS  Google Scholar 

  60. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    Article  PubMed  CAS  Google Scholar 

  61. Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S et al (2004) Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103(8):3175–3184

    Article  PubMed  CAS  Google Scholar 

  62. Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS (1999) Role o f NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood 93(9):3044–3052

    PubMed  CAS  Google Scholar 

  63. Shen J, Channavajhala P, Seldin DC, Sonenshein GE (2001) Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha. J Immunol 167(9):4919–4925

    PubMed  CAS  Google Scholar 

  64. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al (2002) Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 99(11):4079–4086

    Article  PubMed  CAS  Google Scholar 

  65. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173(3):699–703

    Article  PubMed  CAS  Google Scholar 

  66. Deng L, Ding W, Granstein RD (2003) Thalidomide inhibits tumor necrosis factor-alpha production and antigen presentation by Langerhans cells. J Invest Dermatol 121(5):1060–1065

    Article  PubMed  CAS  Google Scholar 

  67. D'Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91(9):4082–4085

    Article  PubMed  Google Scholar 

  68. Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL et al (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 102(24):8567–8572

    Article  PubMed  CAS  Google Scholar 

  69. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P et al (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341(21):1565–1571

    Article  PubMed  CAS  Google Scholar 

  70. Barlogie B, Desikan R, Eddlemon P, Spencer T, Zeldis J, Munshi N et al (2001) Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 98(2):492–494

    Article  PubMed  CAS  Google Scholar 

  71. Alexanian R, Weber D, Anagnostopoulos A, Delasalle K, Wang M, Rankin K (2003) Thalidomide with or without dexamethasone for refractory or relapsing multiple myeloma. Semin Hematol 40(4 Suppl 4):3–7

    Article  PubMed  CAS  Google Scholar 

  72. Barlogie B, Zangari M, Spencer T, Fassas A, Anaissie E, Badros A et al (2001) Thalidomide in the management of multiple myeloma. Semin Hematol 38(3):250–259

    Article  PubMed  CAS  Google Scholar 

  73. Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F et al (2006) Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med 354(10):1021–1030

    Article  PubMed  CAS  Google Scholar 

  74. Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M et al (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23(23):5334–5346

    Article  PubMed  CAS  Google Scholar 

  75. Anderson KC (2003) The role of immunomodulatory drugs in multiple myeloma. Semin Hematol 40(4 Suppl 4):23–32

    Article  PubMed  CAS  Google Scholar 

  76. Richardson P, Anderson K (2004) Immunomodulatory analogs of thalidomide: an emerging new therapy in myeloma. J Clin Oncol 22(16):3212–3224

    Article  PubMed  CAS  Google Scholar 

  77. Richardson PG, Blood E, Mitsiades CS, Jagannath S, Zeldenrust SR, Alsina M et al (2006) A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 108:3458–3464

    Article  PubMed  CAS  Google Scholar 

  78. Bartlett JB, Tozer A, Stirling D, Zeldis JB (2005) Recent clinical studies of the immunomodulatory drug (IMiD) lenalidomide. Br J Cancer 93(6):613–619

    Article  PubMed  CAS  Google Scholar 

  79. Rajkumar SV, Hayman SR, Lacy MQ, Dispenzieri A, Geyer SM, Kabat B et al (2005) Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 106(13):4050–4053

    Article  PubMed  CAS  Google Scholar 

  80. Mani A, Gelmann EP (2005) The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23(21):4776–4789

    Article  PubMed  CAS  Google Scholar 

  81. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22(5):442–451

    Article  PubMed  CAS  Google Scholar 

  82. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6(1):79–87

    Article  PubMed  CAS  Google Scholar 

  83. Adams J (2001) Proteasome inhibition in cancer: development of PS-341. Semin Oncol 28(6):613–619

    Article  PubMed  CAS  Google Scholar 

  84. Elliott PJ, Ross JS (2001) The proteasome: a new target for novel drug therapies. Am J Clin Pathol 116(5):637–646

    Article  PubMed  CAS  Google Scholar 

  85. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61(7):3071–3076

    PubMed  CAS  Google Scholar 

  86. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N et al (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62(17):4996–5000

    PubMed  CAS  Google Scholar 

  87. Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172

    Article  PubMed  CAS  Google Scholar 

  88. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(11):2615–2622

    PubMed  CAS  Google Scholar 

  89. Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23(3):630–639

    Article  PubMed  CAS  Google Scholar 

  90. Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD (2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23(11):2009–2015

    Article  PubMed  CAS  Google Scholar 

  91. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277(19):16639–16647

    Article  PubMed  CAS  Google Scholar 

  92. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61(9):3535–3540

    PubMed  CAS  Google Scholar 

  93. Chauhan D, Li G, Podar K, Hideshima T, Mitsiades C, Schlossman R et al (2004) Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood 104(8):2458–2466

    Article  PubMed  CAS  Google Scholar 

  94. Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A et al (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102(1):303–310

    Article  PubMed  CAS  Google Scholar 

  95. Sayers TJ, Murphy WJ (2006) Combining proteasome inhibition with TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) for cancer therapy. Cancer Immunol Immunother 55(1):76–84

    Article  PubMed  CAS  Google Scholar 

  96. Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS (2005) The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4(3):443–449

    PubMed  CAS  Google Scholar 

  97. Chauhan D, Li G, Podar K, Hideshima T, Neri P, He D et al (2005) A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res 65(18):8350–8358

    Article  PubMed  CAS  Google Scholar 

  98. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cells. 8(5):407–419

    Article  CAS  Google Scholar 

  99. Chauhan D, Catley L, Li G, Hideshima T, Richardson P, Palladino M et al (2005) Preclinical evaluation of a novel and orally active proteasome inhibitor as a therapy in relapsed/refractory multiple myeloma. J Clin Oncol (ASCO Annual Meeting Proceedings) 23(16S):3122

    Google Scholar 

  100. Bharti AC, Donato N, Singh S, Aggarwal BB (2003) Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101(3):1053–1062

    Article  PubMed  CAS  Google Scholar 

  101. Hideshima T, Hayashi T, Chauhan D, Akiyama M, Richardson P, Anderson K (2003) Biologic sequelae of c-Jun NH(2)-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene 22(54):8797–8801

    Article  PubMed  CAS  Google Scholar 

  102. Akiyama M, Hideshima T, Hayashi T, Tai YT, Mitsiades CS, Mitsiades N et al (2003) Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 63(1):18–21

    PubMed  CAS  Google Scholar 

  103. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X et al (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89(9):3345–3353

    PubMed  CAS  Google Scholar 

  104. Raffoux E, Rousselot P, Poupon J, Daniel MT, Cassinat B, Delarue R et al (2003) Combined treatment with arsenic trioxide and all-trans-retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol 21(12):2326–2334

    Article  PubMed  CAS  Google Scholar 

  105. Rousselot P, Labaume S, Marolleau JP, Larghero J, Noguera MH, Brouet JC et al (1999) Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 59(5):1041–1048

    PubMed  CAS  Google Scholar 

  106. Hayashi T, Hideshima T, Akiyama M, Richardson P, Schlossman RL, Chauhan D et al (2002) Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol Cancer Ther 1(10):851–860

    PubMed  CAS  Google Scholar 

  107. Rousselot P, Larghero J, Labaume S, Poupon J, Chopin M, Dosquet C et al (2004) Arsenic trioxide is effective in the treatment of multiple myeloma in SCID mice. Eur J Haematol 72(3):166–171

    Article  PubMed  CAS  Google Scholar 

  108. Munshi NC, Tricot G, Desikan R, Badros A, Zangari M, Toor A et al (2002) Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia 16(9):1835–1837

    Article  PubMed  CAS  Google Scholar 

  109. Hussein MA, Saleh M, Ravandi F, Mason J, Rifkin RM, Ellison R (2004) Phase 2 study of arsenic trioxide in patients with relapsed or refractory multiple myeloma. Br J Haematol 125(4):470–476

    Article  PubMed  CAS  Google Scholar 

  110. Hu J, Fang J, Dong Y, Chen SJ, Chen Z (2005) Arsenic in cancer therapy. Anticancer Drugs 16(2):119–127

    Article  PubMed  CAS  Google Scholar 

  111. Berenson JR, Swift RA, Ferretti D, Purner MB (2004) A prospective, open-label safety and efficacy study of combination treatment with melphalan, arsenic trioxide, and ascorbic acid in patients with relapsed or refractory multiple myeloma. Clin Lymphoma 5(2):130–134

    PubMed  CAS  Google Scholar 

  112. Borad MJ, Swift R, Berenson JR (2005) Efficacy of melphalan, arsenic trioxide, and ascorbic acid combination therapy (MAC) in relapsed and refractory multiple myeloma. Leukemia 19(1):154–156

    PubMed  CAS  Google Scholar 

  113. Rousselot P, Larghero J, Arnulf B, Poupon J, Royer B, Tibi A et al (2004) A clinical and pharmacological study of arsenic trioxide in advanced multiple myeloma patients. Leukemia 18(9):1518–1521

    Article  PubMed  CAS  Google Scholar 

  114. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al (2004) Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cells 5(3):221–230

    Article  CAS  Google Scholar 

  115. Menu E, Jernberg-Wiklund H, Stromberg T, De Raeve H, Girnita L, Larsson O et al (2006) Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107(2):655–660

    Article  PubMed  CAS  Google Scholar 

  116. Stromberg T, Ekman S, Girnita L, Dimberg LY, Larsson O, Axelson M et al (2006) IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood 107(2):669–678

    Article  PubMed  CAS  Google Scholar 

  117. Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM (2005) Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood 105(1):317–323

    Article  PubMed  CAS  Google Scholar 

  118. Hu L, Shi Y, Hsu JH, Gera J, Van Ness B, Lichtenstein A (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101(8):3126–3135

    Article  PubMed  CAS  Google Scholar 

  119. Le Gouill S, Pellat-Deceunynck C, Harousseau JL, Rapp MJ, Robillard N, Bataille R et al (2002) Farnesyl transferase inhibitor R115777 induces apoptosis of human myeloma cells. Leukemia 16(9):1664–1667

    Article  PubMed  CAS  Google Scholar 

  120. Ochiai N, Uchida R, Fuchida S, Okano A, Okamoto M, Ashihara E et al (2003) Effect of farnesyl transferase inhibitor R115777 on the growth of fresh and cloned myeloma cells in vitro. Blood 102(9):3349–3353

    Article  PubMed  CAS  Google Scholar 

  121. Beaupre DM, McCafferty-Grad J, Bahlis NJ, Boise LH, Lichtenheld MG (2003) Farnesyl transferase inhibitors enhance death receptor signals and induce apoptosis in multiple myeloma cells. Leuk Lymphoma 44(12):2123–2134

    Article  PubMed  CAS  Google Scholar 

  122. Bolick SC, Landowski TH, Boulware D, Oshiro MM, Ohkanda J, Hamilton AD et al (2003) The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug-resistant myeloma tumor cells. Leukemia 17(2):451–457

    Article  PubMed  CAS  Google Scholar 

  123. Cortes J, Albitar M, Thomas D, Giles F, Kurzrock R, Thibault A et al (2003) Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood 101(5):1692–1697

    Article  PubMed  CAS  Google Scholar 

  124. Alsina M, Fonseca R, Wilson EF, Belle AN, Gerbino E, Price-Troska T et al (2004) Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 103(9):3271–3277

    Article  PubMed  CAS  Google Scholar 

  125. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE et al (2005) Anti-myeloma activity of heat shock protein-90 inhibition. Blood 107(3):1092–1100

    Article  PubMed  CAS  Google Scholar 

  126. David E, Sun SY, Waller EK, Chen J, Khuri FR, Lonial S (2005) The combination of the Farnesyl transferase inhibitor (Lonafarnib) and the proteasome inhibitor (Bortezomib) induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood 106(13):4322–4329

    Article  PubMed  CAS  Google Scholar 

  127. van de Donk NW, Lokhorst HM, Nijhuis EH, Kamphuis MM, Bloem AC (2005) Geranylgeranylated proteins are involved in the regulation of myeloma cell growth. Clin Cancer Res 11(2 Pt 1):429–439

    PubMed  Google Scholar 

  128. Morgan MA, Sebil T, Aydilek E, Peest D, Ganser A, Reuter CW (2005) Combining prenylation inhibitors causes synergistic cytotoxicity, apoptosis and disruption of RAS-to-MAP kinase signalling in multiple myeloma cells. Br J Haematol 130(6):912–925

    Article  PubMed  CAS  Google Scholar 

  129. Podar K, Tai YT, Lin BK, Narsimhan RP, Sattler M, Kijima T et al (2002) Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem 277(10):7875–7881

    Article  PubMed  CAS  Google Scholar 

  130. Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20(2):193–199

    Article  PubMed  CAS  Google Scholar 

  131. Lin B, Podar K, Gupta D, Tai YT, Li S, Weller E et al (2002) The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 62(17):5019–5026

    PubMed  CAS  Google Scholar 

  132. Podar K, Catley LP, Tai YT, Shringarpure R, Carvalho P, Hayashi T et al (2004) GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 103(9):3474–3479

    Article  PubMed  CAS  Google Scholar 

  133. Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J et al (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10(1 Pt 1):88–95

    Article  PubMed  CAS  Google Scholar 

  134. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633

    Article  PubMed  CAS  Google Scholar 

  135. Gazitt Y (1999) TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia 13(11):1817–1824

    Article  PubMed  CAS  Google Scholar 

  136. Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R et al (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98(3):795–704

    Article  PubMed  CAS  Google Scholar 

  137. Gomez-Benito M, Balsas P, Bosque A, Anel A, Marzo I, Naval J (2005) Apo2L/TRAIL is an indirect mediator of apoptosis induced by interferon-alpha in human myeloma cells. FEBS Lett 579(27):6217–6222

    Article  PubMed  CAS  Google Scholar 

  138. Crowder C, Dahle O, Davis RE, Gabrielsen OS, Rudikoff S (2005) PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 105(3):1280–1287

    Article  PubMed  CAS  Google Scholar 

  139. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al (1997) Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16(3):260–264

    Article  PubMed  CAS  Google Scholar 

  140. Paterson JL, Li Z, Wen XY, Masih-Khan E, Chang H, Pollett JB et al (2004) Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 124(5):595–603

    Article  PubMed  CAS  Google Scholar 

  141. Trudel S, Ely S, Farooqi Y, Affer M, Robbiani DF, Chesi M et al (2004) Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 103(9):3521–3528

    Article  PubMed  CAS  Google Scholar 

  142. Chen J, Lee BH, Williams IR, Kutok JL, Mitsiades CS, Duclos N et al (2005) FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene 24(56):8259–8267

    Article  PubMed  CAS  Google Scholar 

  143. Trudel S, Stewart AK, Rom E, Wei E, Li ZH, Kotzer S et al (2006) The inhibitory anti-FGFR3 antibody, PRO-001 is cytotoxic to t(4;14) multiple myeloma cells. Blood 7:7

    Google Scholar 

  144. Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14(14):R546–R551

    Article  PubMed  CAS  Google Scholar 

  145. Piazza F, Semenzato G (2004) Molecular therapeutic approaches to acute myeloid leukemia: targeting aberrant chromatin dynamics and signal transduction. Expert Rev Anticancer Ther 4(3):387–400

    Article  PubMed  CAS  Google Scholar 

  146. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51

    Article  PubMed  CAS  Google Scholar 

  147. Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168

    Article  PubMed  CAS  Google Scholar 

  148. Lavelle D, Chen YH, Hankewych M, DeSimone J (2001) Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol 68(3):170–178

    Article  PubMed  CAS  Google Scholar 

  149. Mitsiades N, Mitsiades CS, Richardson PG, McMullan C, Poulaki V, Fanourakis G et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101(10):4055–4062

    Article  PubMed  CAS  Google Scholar 

  150. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101(2):540–545

    Article  PubMed  CAS  Google Scholar 

  151. Khan SB, Maududi T, Barton K, Ayers J, Alkan S (2004) Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol 125(2):156–161

    Article  PubMed  CAS  Google Scholar 

  152. Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10(11):3839–3852

    Article  PubMed  CAS  Google Scholar 

  153. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772

    Article  PubMed  CAS  Google Scholar 

  154. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99(22):14374–14379

    Article  PubMed  CAS  Google Scholar 

  155. Hideshima T, Podar K, Chauhan D, Ishitsuka K, Mitsiades C, Tai YT et al (2004) p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 23(54):8766–8776

    Article  PubMed  CAS  Google Scholar 

  156. Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q (2006) Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107(6):2432–2439

    Article  PubMed  CAS  Google Scholar 

  157. Urashima M, Ogata A, Chauhan D, Hatziyanni M, Vidriales MB, Dedera DA et al (1996) Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood 87(5):1928–1938

    PubMed  CAS  Google Scholar 

  158. Kroning H, Tager M, Thiel U, Ittenson A, Reinhold D, Buhling F et al (1997) Overproduction of IL-7, IL-10 and TGF-beta 1 in multiple myeloma. Acta Haematol 98(2):116–118

    Article  PubMed  CAS  Google Scholar 

  159. Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM (1999) Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 66(6):981–988

    PubMed  CAS  Google Scholar 

  160. Abildgaard N, Glerup H, Rungby J, Bendix-Hansen K, Kassem M, Brixen K et al (2000) Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur J Haematol 64(2):121–129

    Article  PubMed  CAS  Google Scholar 

  161. Wright N, de Lera TL, Garcia-Moruja C, Lillo R, Garcia-Sanchez F, Caruz A et al (2003) Transforming growth factor-beta1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion. Blood 102(6):1978–1984

    Article  PubMed  CAS  Google Scholar 

  162. Hayashi T, Hideshima T, Nguyen AN, Munoz O, Podar K, Hamasaki M et al (2004) Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res 10(22):7540–7546

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all the members of the Unit of Hematological Malignancies at VIMM and of the Hematology-Immunology Section at Padua University Hospital for support and suggestions. We thank M. E. Donach for reading the manuscript. Work in G.S. Lab is supported by grants from the International Myeloma Foundation (to F.A.P.), from the Associazione Italiana per la Ricerca sul Cancro (AIRC) and Istituto Oncologico Veneto (IOV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpietro Semenzato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piazza, F.A., Gurrieri, C., Trentin, L. et al. Towards a new age in the treatment of multiple myeloma. Ann Hematol 86, 159–172 (2007). https://doi.org/10.1007/s00277-006-0239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-006-0239-5

Keywords

Navigation