Skip to main content

Advertisement

Log in

Below-the-knee Interventions

  • CIRSE Standards of Practice Guidelines
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Norgren L, Hiatt WR, Dormandy JA et al (2007) Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 3(suppl 1):S1–S75

    Article  Google Scholar 

  2. Spiliopoulos S, Katsanos K, Karnabatidis D et al (2010) Cryoplasty versus conventional balloon angioplasty of the femoropopliteal artery in diabetic patients: long-term results from a prospective randomized single-center controlled trial. Cardiovasc Intervent Radiol 33:929–938

    Article  PubMed  Google Scholar 

  3. Graziani L, Silvestro A, Bertone V et al (2007) Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg 33:453–460

    Article  PubMed  CAS  Google Scholar 

  4. Rooke TW, Hirsch AT, Misra S et al (2011) 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline). Vasc Med 16:452–476

    Article  PubMed  Google Scholar 

  5. Haider CR, Riederer SJ, Borisch et al (2011) High temporal and spatial resolution 3D time-resolved contrast-enhanced magnetic resonance angiography of the hands and feet. J Magn Reson Imaging 34:2–12

    Article  PubMed  Google Scholar 

  6. Soulez G, Therasse E, Giroux MF et al (2011) Management of peripheral arterial disease: role of computed tomography angiography and magnetic resonance angiography. Presse Med 40(9 pt 2):e437–e452

    Article  PubMed  Google Scholar 

  7. Voth M, Haneder S, Huck K et al (2009) Peripheral magnetic resonance angiography with continuous table movement in combination with high spatial and temporal resolution time-resolved MRA with a total single dose (0.1 mmol/kg) of gadobutrol at 3.0 T. Invest Radiol 44:627–633

    Article  PubMed  Google Scholar 

  8. Collins R, Burch J, Cranny G et al (2007) Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ 334(7606):1257

    Article  PubMed  Google Scholar 

  9. Manzi M, Cester G, Palena LM et al (2011) Vascular imaging of the foot: the first step toward endovascular recanalization. Radiographics 31:1623–1636

    Article  PubMed  Google Scholar 

  10. Kreitner KF, Kunz RP, Herber S et al (2008) MR angiography of the pedal arteries with gadobenate dimeglumine, a contrast agent with increased relaxivity, and comparison with selective intraarterial DSA. J Magn Reson Imaging 27:78–85

    Article  PubMed  Google Scholar 

  11. Hofmann WJ, Walter J, Ugurluoglu A et al (2004) Preoperative high-frequency duplex scanning of potential pedal target vessels. J Vasc Surg 39:169–175

    Article  PubMed  CAS  Google Scholar 

  12. Stacul F, van der Molen AJ, Reimer P et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Committee guidelines. Eur Radiol 21:2527–2541

    Article  PubMed  Google Scholar 

  13. Erselcan T, Egilmez H, Hasbek Z, Tandogan I (2012) Contrast-induced nephropathy: controlled study by differential GFR measurement in hospitalized patients. Acta Radiol 53:228–232

    Article  PubMed  Google Scholar 

  14. Altun E, Martin DR, Wertman R et al (2009) Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy—report from two US universities. Radiology 253:689–696

    Article  PubMed  Google Scholar 

  15. Miyazaki M, Akahane M (2012) Non–contrast enhanced MR angiography: established techniques. J Magn Reson Imaging 35:1–19. doi:10.1002/jmri.22789

    Article  PubMed  Google Scholar 

  16. Lida O, Soga Y, Hirano K et al (2011) Long-term results of direct and indirect endovscular revascularization based on the angiosome concept in patients with critical limb ischemia presenting with isolated below-the-knee lesions. J Vasc Surg 55:363–370

    Google Scholar 

  17. Peregin J, Koznar B, Kovac J et al (2010) PTA of infrapopliteal arteries: long-term clinical follow-up and analysis of factors influencing clinical outcome. Cardiovasc Intervent Radiol 33:720–725

    Article  Google Scholar 

  18. Spiliopoulos S, Katsanos K, Diamantopoulos A, Karnabatidis D, Siablis D (2011) Does ultrasound-guided lidocaine injection improve local anaesthesia before femoral artery catheterization? Clin Radiol 66:449–455

    Article  PubMed  CAS  Google Scholar 

  19. Altenburg A, Haage P (2012) Antiplatelet and anticoagulant drugs in interventional radiology. Cardiovasc Intervent Radiol 35:30–42

    Article  PubMed  Google Scholar 

  20. Karnabatidis D, Spiliopoulos S, Katsanos K, Siablis D (2012) Below-the knee drug-eluting stents and drug-coated balloons. Expert Rev Med Devices 9:85–94

    Article  PubMed  Google Scholar 

  21. Lumsden AB, Davies MG, Peden EK (2009) Medical and endovascular management of critical limb ischemia. J Endovasc Ther 16(2 suppl 2):II31–II62

    Article  PubMed  Google Scholar 

  22. Feldman DN, Fakorede F, Minutello RM et al (2010) Efficacy of high-dose clopidogrel treatment (600 mg) less than two hours before percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndromes. Am J Cardiol 105:323–332

    Article  PubMed  CAS  Google Scholar 

  23. Leon MN, Baim DS, Popma JJ et al (1998) A clinical trial comparing three antithrombotic-drug regiments after coronary stenting. Stent Anticoagulation Restenosis Study Investigators. N Engl J Med 339:1665–1675

    Article  PubMed  CAS  Google Scholar 

  24. Karnabatidis D, Spiliopoulos S, Diamantopoulos A et al (2011) Primary everolimus-eluting stenting versus balloon angioplasty with bailout bare metal stenting of long infrapopliteal lesions for treatment of critical limb ischemia. J Endovasc Ther 18:1–12

    Article  PubMed  Google Scholar 

  25. Siablis D, Karnabatidis D, Katsanos K et al (2007) Sirolimus-eluting versus bare stents after suboptimal infrapopliteal angioplasty for critical limb ischemia: enduring 1-year angiographic and clinical benefit. J Endovasc Ther 14:241–250

    Article  PubMed  Google Scholar 

  26. Tsetis D, Belli AM (2004) The role of infrapopliteal angioplasty. Br J Radiol 77:1007–1015

    Article  PubMed  CAS  Google Scholar 

  27. Price MJ, Berger PB, Teirstein PS et al (2011) Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 305:1097–1105

    Article  PubMed  CAS  Google Scholar 

  28. Parodi G, Marcucci R, Valenti R et al (2011) High residual platelet reactivity after clopidogrel loading and long-term cardiovascular events among patients with acute coronary syndromes undergoing PCI. JAMA 306:1215–1223

    Article  PubMed  CAS  Google Scholar 

  29. Siablis D, Karnabatidis D, Katsanos K et al (2009) Infrapopliteal application of sirolimus-eluting versus bare metal stents for critical limb ischemia: analysis of long-term angiographic and clinical outcomes. J Vasc Interv Radiol 20:1141–1150

    Article  PubMed  Google Scholar 

  30. Manzi M, Fusaro M, Ceccacci T et al (2009) Clinical results of below-the knee intervention using pedal–plantar loop technique for the revascularization of foot arteries. J Cardiovasc Surg (Torino) 50:331–337

    CAS  Google Scholar 

  31. Fusaro M, Dalla Paola L, Biondi-Zoccai G (2007) Pedal–plantar loop technique for a challenging below-the-knee chronic total occlusion: a novel approach to percutaneous revascularization in critical lower limb ischemia. J Invasive Cardiol 19:E34–E37

    PubMed  Google Scholar 

  32. Gandini R, Pipitone V, Stefanini M et al (2007) The “safari” technique to perform difficult subintimal infragenicular vessels. Cardiovasc Intervent Radiol 30:469–473

    Article  PubMed  Google Scholar 

  33. Varty K, Bolia A, Naylor AR et al (1995) Infrapopliteal percutaneous transluminal angioplasty: a safe and successful procedure. Eur J Vasc Endovasc Surg 9:341–345

    Article  PubMed  CAS  Google Scholar 

  34. Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD). TASC working group. Transatlantic inter-society consensus (TASC). J Vasc Surg 31:S1–S296

    Article  PubMed  CAS  Google Scholar 

  35. Söder HK, Manninen HI, Jaakola PJ et al (2000) Prospective trial of infrapopliteal artery balloon angioplasty for critical limb ischemia: angiographic and clinical results. J Vasc Intervent Radiol 11:1021–1031

    Article  Google Scholar 

  36. Conrad MF, Kang J, Cambria RP et al (2009) Infrapopliteal balloon angioplasty for the treatment of chronic occlusive disease. J Vasc Surg 50:799–805

    Article  PubMed  Google Scholar 

  37. Romiti M, Albers M, Brochado-Neto FC et al (2008) Meta-analysis of infrapopliteal angioplasty for chronic critical ischemia. J Vasc Surg 47:975–981

    Article  PubMed  Google Scholar 

  38. Albers M, Romiti M, Brochado-Neto FC et al (2006) Meta-analysis of popliteal to distal vein bypass grafts for critical ischemia. J Vasc Surg 43:498–503

    Article  PubMed  Google Scholar 

  39. Haider SN, Kavanagh EG, Forlee M et al (2006) Two-year outcome with preferential use of infrainguinal angioplasty for critical ischemia. J Vasc Surg 43:504–512

    Article  PubMed  Google Scholar 

  40. Söderström MI, Arvela EM, Korhonen M et al (2010) Infrapopliteal percutaneous transluminal angioplasty versus bypass surgery as first-line strategies in critical leg ischemia. A propensity score analysis. Ann Surg 252:765–773

    Article  Google Scholar 

  41. LaMuraglia GM, Conrad MF, Chung T et al (2009) Significant perioperative morbidity accompanies contemporary infrainguinal bypass surgery: an NSQIP report. J Vasc Surg 50:299–304

    Article  PubMed  Google Scholar 

  42. Schmidt A, Piorkowski M, Werner M et al (2011) First experience with drug eluting balloons in infrapopliteal arteries. J Am Coll Cardiol 6(58):1105–1109

    Article  Google Scholar 

  43. Kickuth R, Keo HH, Triller J et al (2007) Initial clinical experience with the 4-F self-expanding XPERT stent system for infrapopliteal treatment of patients with severe claudication and critical limb ischemia. J Vasc Surg 18:703–708

    Google Scholar 

  44. Peregrin JH, Smirová S, Nonvotný J et al (2008) Self-expandable stent placement in infrapopliteal arteries after unsuccessful angioplasty failure: one-year follow-up. Cardiovasc Intervent Radiol 31:860–864

    Article  PubMed  CAS  Google Scholar 

  45. Donas KP, Torsello G, Schwindt A et al (2010) Below knee bare nitinol stent placement in high-risk patients with critical limb ischemia is still durable after 24 months of follow-up. J Vasc Surg 52:356–361

    Article  PubMed  Google Scholar 

  46. Randon C, Jacobs B, De Ryck F, Vermassen F (2010) Angioplasty or primary stenting for infrapopliteal lesions: results of a prospective randomized trial. Cardiovasc Intervent Radiol 33:260–269

    Article  PubMed  CAS  Google Scholar 

  47. Siablis D, Karnabatidis D, Katsanos K et al (2007) Infrapopliteal application of paclitaxel-eluting stents for critical limb ischemia: midterm angiographic and clinical results. J Vasc Interv Radiol 18:1351–1361

    Article  PubMed  Google Scholar 

  48. Rastan A, Tepe G, Krankenberg H et al (2011) Sirolimus-eluting stents vs bare metal stents for treatment of focal lesions in infrapopliteal arteries: a double-blind, multi-centre, randomized clinical trial. Eur Heart J 32:2274–2281

    Article  PubMed  CAS  Google Scholar 

  49. Bosiers M, Scheinert D, Peeters P et al (2012) Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg 55:390–399

    Article  PubMed  Google Scholar 

  50. Martens JM, Knippenberg B, Vos JA et al (2009) Update on PADI trial: percutaneous transluminal angioplasty and drug-eluting stents for infrapopliteal lesions in critical limb ischemia. J Vasc Surg 50:687–690

    Article  PubMed  Google Scholar 

  51. Bosiers M, AMS INSIGHT Investigators et al (2009) AMS INSIGHT—Absorbable metal stent implantation for treatment of below the knee critical limb ischemia: 6-month analysis. Cardiovasc Intervent Radiol 32:424–435

    Article  PubMed  Google Scholar 

  52. Rand T, Lammer J, Rabbia C et al (2011) Percutaneous transluminal angioplasty versus turbostatic carbon-coated stents in infrapopliteal arteries: InPeria II trial. Radiology 261:634–642

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

H. van Overhagen has received grants and has grants pending from Abbott, Boston Scientific, Cordis, and Cook. In addition, he has received payment for lectures, as well as travel and accommodation reimbursement from these companies. Grants and payments are not related to the present article. The other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. van Overhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Overhagen, H., Spiliopoulos, S. & Tsetis, D. Below-the-knee Interventions. Cardiovasc Intervent Radiol 36, 302–311 (2013). https://doi.org/10.1007/s00270-013-0550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-013-0550-1

Keywords

Navigation