Skip to main content
Log in

Observations on the crystal structures of lueshite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO3 demonstrate that lueshite does not adopt the same space group (Pbma; #57) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from Cmcm through P4/mbm to \(Pm\overline{3} m\) above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO3, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahtee M, Hewat AW (1975) The structures of Na0.98K0.02NbO3 and Na0.90K0.10NbO3 (Phase Q) at room temperature by neutron powder diffraction. Acta Cryst A31:846–850

    Article  Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1997) Handbook of Mineralogy. Volume III. Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson

    Google Scholar 

  • Blackburn WH, Dennan WH (1977) Encylopedia of mineral names. Can Mineral Spec Publ 1:179

  • Bokov AA, Ye ZG (2001) Recent progress in relaxor ferroelectrics with perovskite structures. J Mat Sci 41:31–52

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1997) Compositional variation of perovskite-group minerals from the carbonatite complexes of the Kola alkaline province, Russia. Can Mineral 35:1293–1310

    Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia. Mineral Mag 62:769–782

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. Eur J Mineral 14:821–836

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH, Pankov AV, Chukhanov NV (1999) Loparite and “metaloparite” from the Burpala alkaline complex, Baikal Alkaline Province (Russia). Mineral Mag 63:519–534

    Article  Google Scholar 

  • Chakhmouradian AR, Halden NM, Mitchell RH, Horvath L (2007) Rb–Cs-rich rasvumite and sector zoned “Loparite-(Ce)” from Mont Saint Hilaire (Quebec) and their petrologic significance. Eur J Mineral 19:533–543

    Article  Google Scholar 

  • Danø M, Sørenson H (1959) An examination of some rare minerals from the nepheline syenites of southwest Greenland. Medd om Grønland 162:1–35

    Google Scholar 

  • Darlington CNW, Knight KS (1999) High temperature phases of NaNbO3 and NaTaO3. Acta Cryst B55:24–30

    Article  Google Scholar 

  • Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Cryst B28:3384–3392

    Article  Google Scholar 

  • Hewat AW (1974) Neutron powder profile refinement of ferroelectric and antiferroelectric crystal strictures—sodium niobate at 22 °C. Ferroelectrics 7:83–85

    Article  Google Scholar 

  • Howard CJ, Stokes HT (1998) Group theoretical analysis of octahedral tilting in perovskites. Acta Crysta B54:782–789

    Article  Google Scholar 

  • Howard CJ, Stokes HT (2005) Structures and phase transitions in perovskites—a group theoretical approach. Acta Crysta A61:93–111

    Article  Google Scholar 

  • Howard CJ, Knight KS, Kennedy BJ, Kisi EH (2000) The structural phase transitions in strontium zirconate revisited. J Phys: Condens Matter 12:L1–L7

    Google Scholar 

  • Howard CJ, Withers RL, Kennedy BJ (2001) Space group and structure for the perovskite Ca0.5Sr0.5TiO3. J Solid State Chem 160:8–12

    Article  Google Scholar 

  • Ibers JA, Hamilton WC (1974) International tables for X-ray crystallography IV. The Kynoch Press, Birmingham UK

    Google Scholar 

  • Johnston KE, Tang CC, Parker JE, Knight KS, Lightfoot P, Ashbrook SE (2010) The polar phase of NaNbO3: a combined study by powder diffraction, solid state NMR, and first principles calculations. J Am Chem Soc 132:8732–8746

    Article  Google Scholar 

  • Kennedy BJ, Prodjosantoso AK, Howard CJ (1999) Powder neutron diffraction study of the high temperature phase transitions in NaTaO3. J Phys: Condens Matter 11:6319–6327

    Google Scholar 

  • Kern AA, Coelho AA (1998) TOPAS version 2.1: general profile and structure analysis software for powder diffraction data. Bruker AXS Karlsruhe p 79

  • Kummert P (1968) Propriétés optiques de la lueshite. Bull Soc Belge Geol 68:269–273

    Google Scholar 

  • Larsen AC, Von Dreele RB (2004) General structure analysis system (GSAS), Los Alamos National Laboratory Report

  • Maravic HV, Morteani G, Roethe G (1989) The cancrinite-syenite/carbonatite complex of Lueshe, Kivu, NE-Zaire: petrographic and geochemical studies and its economic significance. J Afr Earth Sci 9:341–355

    Article  Google Scholar 

  • Mishra SK, Mittal R, Pomjakushin VY, Chaplot SL (2011) Phase stability and structural temperature dependence in sodium niobate: a high resolution powder neutron diffraction study. Phys Rev B 83:134105–134113

    Article  Google Scholar 

  • Mitchell RH (1996) Perovskites: a revised classification for an important rare earth element host in alkaline rocks. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman & Hall, London, pp 41–76

    Google Scholar 

  • Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Thunder Bay

    Google Scholar 

  • Mitchell RH, Chakhmouradian AR (1996) Compositional variation of loparite from the Lovozero alkaline complex, Russia. Can Mineral 34:977–990

    Google Scholar 

  • Mitchell RH, Burns PC, Chakhmouradian AR (2000) The crystal structures of loparite-(Ce). Can Mineral 38:144–152

    Google Scholar 

  • Mitchell RH, Burns PC, Chakhmouradian AR, Levin I (2002) The crystal structures of lueshite and NaNbO3.. Internat Mineral Assoc Mtg Edinburgh, Scotland, Abstract A9-5

  • Nickel EH, McAdam RC (1963) Niobian perovskite from Oka, Quebec: a new classification for minerals of the perovskite group. Can Mineral 7:683–697

    Google Scholar 

  • Noheda B, Gonzalo JA, Cross LE, Park SE, Cox DE, Shirane G (2000) Tetragonal to monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B61:8687–8695

    Article  Google Scholar 

  • Peel MD, Thompson SP, Daud-Aladine A, Ashbrook SE, Lightfoot P (2012) New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3. Inorg Chem 51:6876–6889

    Article  Google Scholar 

  • Ranjan R, Pandey D, Siuguri V, Kirshna PSR, Paranjipe SK (1999) Novel structural features and phase transition behaviour of (Sr1-x Ca x )TiO3: I Neutron diffraction study. J Phys: Condens Matter 11:2233–2246

    Google Scholar 

  • Safianikoff A (1959) Un nouveau minéral de niobium. Bull Acad Roy Sci Outre-mer 6:1251–1255

    Google Scholar 

  • Sakowski-Crowley AC, Lukaszewicz K, Megaw HD (1969) The structure of sodium niobate at room temperature, and the problem of the reliability in pseudo-symmetric structures. Acta Cryst 25:851–856

    Article  Google Scholar 

  • Sasaki S, Prewitt CT, Bass JD (1987) Orthorhombic perovskite CaTiO3 and CdTiO3 Structure and space group. Acta Cryst C43:1668–1674

    Google Scholar 

  • Sciau P, Kania A, Dkhil B, Suard E Ratuszna (2004) Structural investigation of AgNbO3 using X-ray and neutron diffraction. J Phys: Condens Matter 16:2795–2810

    Google Scholar 

  • Shan YJ, Nakamura T, Inaguma Y, Itoh M (1998) Preparation and dielectric characterization of the novel perovskite-type oxides (Ln½Na½)TiO3 (Ln = Dy, Ho, Er, Tm, Yb, Lu). Solid State Ionics 108:123–128

    Article  Google Scholar 

  • Sun PH, Nakamura T, Shan YJ, Inaguma Y, Itoh M (1997) High temperature quantum para-electricity in perovskite type titanates Ln ½Na½TiO3 (Ln = La, Pr, Nd, Sm, Eu, Gd, and Tb). Ferroelectrics 200:93–107

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  Google Scholar 

  • Vousden P (1951) The structure of the ferroelectric sodium niobate at room temperature. Acta Cryst 4:545–551

    Article  Google Scholar 

  • Wood EA (1951) Polymorphism in potassium niobate, sodium niobate and other ABO3 compounds. Acta Cryst 4:353–362

    Article  Google Scholar 

  • Woodward PM (1997) Structural distortions, phase transitions and cation ordering in the perovskite and tungsten trioxide structures. PhD. Thesis Oregon Sate University

  • Zhao Y, Weidner DJ, Parise JB, Cox DE (1993) Critical phenomena and phase transitions of perovskite—data for NaMgF3 Part II. Phys Earth Planet Interiors 76:17–34

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Sciences and Engineering Research Council of Canada, Lakehead University and Almaz Petrology. We thank Anatoly  Zaitsev and Andy McDonald for samples of lueshite from Sallanlatvi and Mont St. Hilaire, respectively, Prof J. Jedwab (Brussels) is thanked for supplying the crystal of synthetic NaNbO3 prepared by Elizabeth Wood (1951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger H. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, R.H., Burns, P.C., Knight, K.S. et al. Observations on the crystal structures of lueshite. Phys Chem Minerals 41, 393–401 (2014). https://doi.org/10.1007/s00269-014-0657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0657-1

Keywords

Navigation