Skip to main content
Log in

Origin of birefringence in andradite from Arizona, Madagascar, and Iran

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structure of four birefringent andradite samples (two from Arizona, one from Madagascar, and one from Iran) was refined with the Rietveld method, space group \(Ia\overline{3} d\), and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Each sample contains an assemblage of three different cubic phases. From the electron-microprobe (EMPA) results, fine-scale intergrowths in the Arizona-2 and Madagascar samples appear homogeneous with nearly identical compositions of {Ca2.99Mg0.01}Σ3[\({\text{Fe}}_{1.99}^{3 + }\) \({\text{Mn}}_{0.01}^{3 + }\)]Σ2(Si2.95Al0.03 \({\text{Fe}}_{0.02}^{3 + }\))Σ3O12, Adr98 (Arizona-2), and Adr97 (Madagascar). Both samples are near-end-member andradite, ideally {Ca3}[\({\text{Fe}}_{2}^{3 + }\)](Si3)O12, so cation ordering in the X, Y, or Z sites is not possible. Because of the large-scale intergrowths, the Arizona-1 and Iran samples contain three different compositions. Arizona-1 has compositions Adr97 (phase-1), Adr93Grs4 (phase-2), and Adr87Grs11 (phase-3). Iran sample has compositions Adr86Uv12 (phase-1), Adr69Uv30 (phase-2), and Adr76Uv22 (phase-3). The crystal structure of the three phases within each sample was modeled quite well as indicated by the Rietveld refinement statistics of reduced χ2 and overall R (F 2) values of, respectively, 1.980 and 0.0291 (Arizona-1); 1.091 and 0.0305 (Arizona-2); 1.362 and 0.0231 (Madagascar); and 1.681 and 0.0304 (Iran). The dominant phase for each sample has the following unit-cell parameters (Å) and weight fractions (%): a = 12.06314(1), 51.93(9) (Arizona-1); 12.04889(1), 52.47(1) (Arizona-2); 12.06276(1), 52.21(8) (Madagascar); and 12.05962(2), 63.3(1) (Iran). For these dominant phases, the distances and site occupancy factors (sofs) in terms of neutral atoms at the Ca(X), Fe(Y), and Si(Z) sites are as follows: <Ca–O> = 2.4348, Fe–O = 2.0121(6), Si–O = 1.6508(6) Å; Ca(sof) = 0.955(2), Fe(sof) = 0.930(2), and Si(sof) = 0.917(2) (Arizona-1); <Ca–O> = 2.4288, Fe–O = 2.0148(7), Si–O = 1.6476(7) Å; Ca(sof) = 0.953(2), Fe(sof) = 0.891(2), and Si(sof) = 0.927(2) (Arizona-2); <Ca–O> = 2.4319, Fe–O = 2.0220(6), Si–O = 1.6460(6) Å; Ca(sof) = 0.955(2), Fe(sof) = 0.941(2), and Si(sof) = 0.939(2) (Madagascar); and <Ca–O> = 2.4344, Fe–O = 2.0156(8), Si–O = 1.6468(8) Å; Ca(sof) = 0.928(2), Fe(sof) = 0.908(2), and Si(sof) = 0.932(3) (Iran). The sofs based on the EMPA results are similar to those obtained from the Rietveld refinement. Each phase in the HRPXRD results can be correlated with a specific chemical composition. For example, the Iran sample composition Adr63Uv30 corresponds to phase-3 that has the smallest unit-cell parameter; Adr76Uv22 corresponds to phase-1 that has the intermediate cell value; and Adr86Uv13 corresponds to phase-2 that has the largest unit-cell parameter. The bond distances compare well with those obtained from radii sum. The three different cubic phases in each sample cause strain that arises from the mismatch of the cubic unit-cell parameters and give rise to birefringence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo I, Gatta GD, Rotitoti N, Diella V, Pavese A (2010) Green andradite stones: gemological and mineralogical characterisation. Eur J Mineral 23:91–100

    Article  Google Scholar 

  • Agrosì G, Schingaro E, Pedrazzi G, Scandale E, Scordari R (2002) A crystal chemical insight into sector zoning of a titanian andradite (‘melanite’) crystal. Eur J Mineral 14:785–794

    Article  Google Scholar 

  • Akizuki M (1984) Origin of optical variations in grossular-andradite garnet. Am Mineral 66:403–409

    Google Scholar 

  • Akizuki M (1989) Growth structure and crystal symmetry of grossular garnets from the Jeffrey mine, Asbestos, Quebec, Canada. Am Mineral 74:859–864

    Google Scholar 

  • Akizuki M, Takéuchi Y, Terada T, Kudoh Y (1998) Sectoral texture of a cubo-dodecahedral garnet in grandite. Neues Jahrbuch für Mineralogie, Monatshefte 12:565–576

    Google Scholar 

  • Allen FM, Buseck PR (1988) XRD, FTIR, and TEM studies of optically anisotropic grossular garnets. Am Mineral 73:568–584

    Google Scholar 

  • Amthauer G, Rossman GR (1998) The hydrous component in andradite garnet. Am Mineral 83:835–840

    Google Scholar 

  • Angel R, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800°C. Am Mineral 74:509–512

    Google Scholar 

  • Antao SM (2013) Three cubic phases intergrown in a birefringent andradite-grossular garnet and their implications. Phys Chem Mineral (Submitted)

  • Antao SM, Hassan I (2010) A two-phase intergrowth of genthelvite from Mont Saint-Hilaire, Quebec. Can Mineral 48:1217–1223

    Article  Google Scholar 

  • Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Mineral 46:1501–1509

    Article  Google Scholar 

  • Armbruster T, Geiger CA (1993) Andradite crystal chemistry, dynamic x-site disorder and structural strain in silicate garnets. Eur J Mineral 5:59–71

    Google Scholar 

  • Armbruster T, Birrer J, Libowitzky E, Beran A (1998) Crystal chemistry of Ti-bearing andradites. Eur J Mineral 10:907–921

    Google Scholar 

  • Badar MA, Akizuki M, Hussain S (2010) Optical anomaly in iridescent andradite from the Sierra Madre Mountains, Sonora, Mexico. Can Mineral 48:1195–1203

    Article  Google Scholar 

  • Badar MA, Niaz S, Hussain S, Akizuki M (2013) Lamellar texture and optical anomaly in andradite from the Kamaishi mine, Japan. Eur J Mineral 25:53–60

    Article  Google Scholar 

  • Baikie T, Schreyer MK, Wong CL, Pramana SS, Klooster WT, Ferraris C, McIntyre GJ, White TJ (2012) A multi-domain gem-grade Brazilian apatite. Am Mineral 97:1574–1581

    Article  Google Scholar 

  • Blanc Y, Maisonneuve J (1973) Sur la biréfringence des grenats calciques. Bulletin de la Société Française de Minéralogie et de Cristallographie 96:320–321

    Google Scholar 

  • Brauns R (1891) Die optischen Anomalien der Kristalle. Preisschr. Jablonowski Ges, Leipzig

    Google Scholar 

  • Brown D, Mason RA (1994) An occurrence of sectored birefringence in almandine from the Gangon terrane, Labrador. Can Mineral 32:105–110

    Google Scholar 

  • Chakhmouradian AR, McCammon CA (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Phys Chem Miner 32:277–289

    Article  Google Scholar 

  • Chase AB, Lefever RA (1960) Birefringence of synthetic garnets. Am Mineral 45:1126–1129

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Evans BW, Johannes J, Oterdoom H, Trommsdorff V (1976) Stability of chrysotile and antigorite in the serpentinite multisystem. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Foord EE, Mills BA (1978) Biaxiality in ‘isometric’ and ‘dimetric’ crystals. Am Mineral 63:316–325

    Google Scholar 

  • Frank-Kamenetskaya OV, Rozhdestvenskaya LV, Shtukenberg AG, Bannova II, Skalkina YA (2007) Dissymmetrization of crystal structures of grossular-andradite garnets Ca3(Al, Fe)2(SiO4)3. Struct Chem 18:493–503

    Article  Google Scholar 

  • Griffen DT, Hatch DM, Phillips WR, Kulaksiz S (1992) Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet. Am Mineral 77:399–406

    Google Scholar 

  • Hofmeister AM, Schaal RB, Campbell KR, Berry SL, Fagan TJ (1998) Prevalence and origin of birefringence in 48 garnets from the pyrope-almandine- grossularite-spessartine quaternary. Am Mineral 83:1293–1301

    Google Scholar 

  • Ingerson E, Barksdale JD (1943) Iridescent garnet from the Adelaide mining district, Nevada. Am Mineral 28:303–312

    Google Scholar 

  • Jamtveit B (1991) Oscillatory zonation patterns in hydrothermal grossular-andradite garnet: nonlinear dynamics in regions of immiscibility. Am Mineral 76:1319–1327

    Google Scholar 

  • Kingma KJ, Downs JW (1989) Crystal-structure analysis of a birefringent andradite. Am Mineral 74:1307–1316

    Google Scholar 

  • Kitamura K, Komatsu H (1978) Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al, Fe)5O12. Kristallographie und Technik 13:811–816

    Article  Google Scholar 

  • Lager GA, Armbruster T, Rotella FJ, Rossman GR (1989) OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am Mineral 74:840–851

    Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report (LAUR), Philippines, pp 86–748

    Google Scholar 

  • Lee PL, Shu D, Ramanathan M, Preissner C, Wang J, Beno MA, Von Dreele RB, Ribaud L, Kurtz C, Antao SM, Jiao X, Toby BH (2008) A twelve-analyzer detector system for high-resolution powder diffraction. J Synchrotron Radiat 15:427–432

    Article  Google Scholar 

  • Lessing P, Standish RP (1973) Zoned garnet from Crested Butte, Colorado. Am Mineral 58:840–842

    Google Scholar 

  • Locock AJ (2008) An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780

    Article  Google Scholar 

  • Munno R, Rossi G, Tadini C (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy. Am Mineral 65:188–191

    Google Scholar 

  • Nakatsuka A, Yoshiasa A, Yamanaka T, Ito E (1999a) Structure refinement of a birefringent Cr-bearing majorite Mg3(Mg0.34Si0.34Al0.18Cr0.14)2Si3O12. Am Mineral 84:199–202

    Google Scholar 

  • Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O, Katsura T, Ito E (1999b) Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3. Am Mineral 84:1135–1143

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:1769–1780

    Google Scholar 

  • Peterson RC, Locock AJ, Luth RW (1995) Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite. Can Mineral 33:627–631

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Rossman GR, Aines RD (1986) Spectroscopy of a birefringent grossular from Asbestos, Quebec, Canada. Am Mineral 71:779–780

    Google Scholar 

  • Rossmanith E, Armbruster T (1995) The intensity of forbidden reflections of pyrope: umweganregung or symmetry reduction. Z Kristallogr 210:645–649

    Article  Google Scholar 

  • Schingaro E, Scordari F, Capitanio F, Parodi G, Smith DC, Mottana A (2001) Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. Eur J Mineral 13:749–759

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767

    Article  Google Scholar 

  • Sheldrick GM (1997) SHELXL-97-1. Program for crystal structure determination. Institut für Anorg. Chemie, University of Göttingen, Göttingen, Germany

  • Shtukenberg AG, Punin YO, Frank-Kamenetskaya OV, Kovalev OG, Sokolov PB (2001) On the origin of anomalous birefringence in grandite garnets. Mineral Mag 65:445–459

    Article  Google Scholar 

  • Shtukenberg AG, Popov DY, Punin YO (2005) Growth ordering and anomalous birefringence in ugrandite garnets. Mineral Mag 69:537–550

    Article  Google Scholar 

  • Takéuchi Y, Haga N, Umizu S, Sato G (1982) The derivative structure of silicate garnets in grandite. Z Kristallogr 158:53–99

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Wang J, Toby BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. Rev Sci Instrum 79:085105

    Article  Google Scholar 

  • Weber HP, Virgo D, Huggins FE (1975) A neutron-diffraction and 57Fe Mössbauer study of a synthetic Ti-rich garnet. Carnegie Inst Wash Year Book 74:575–579

    Google Scholar 

  • Wildner M, Andrut M (2001) The crystal chemistry of birefringent natural uvarovites: part II. Single-crystal X-ray structures. Am Mineral 86:1231–1251

    Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers and the editor, A. Kavner, for useful comments that helped improve this manuscript. We also thank R. Marr and M. Parvez for help with the EMPA and SXTL data collection, respectively. The HRPXRD data were collected at the X-ray Operations and Research beamline 11-BM, Advanced Photon Source (APS), Argonne National Laboratory (ANL). Use of the APS was supported by the U.S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported with a NSERC Discovery Grant and an Alberta Ingenuity Award to SMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sytle M. Antao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antao, S.M., Klincker, A.M. Origin of birefringence in andradite from Arizona, Madagascar, and Iran. Phys Chem Minerals 40, 575–586 (2013). https://doi.org/10.1007/s00269-013-0594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0594-4

Keywords

Navigation