Skip to main content

Advertisement

Log in

Iron partitioning in pyrolitic lower mantle

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The partitioning of iron between Mg-rich perovskite (Pv) and ferropericlase (Fp) was investigated for a pyrolitic bulk composition over a wide range of simulated lower-mantle pressures and temperatures from 28 to 114 GPa and from 1,900 to 2,300 K, in a laser-heated diamond anvil cell (DAC). The recovered DAC samples are chemically homogeneous, indicating a relatively small temperature gradient during laser heating. The chemical compositions of coexisting Pv, Fp, and Ca-rich perovskite (CaPv) were determined by energy-dispersive X-ray spectroscopy (EDS) using an EDS instrument attached to a transmission electron microscope. Our results demonstrate that at pressures above 90 GPa, Pv becomes more Fe-rich with increasing pressure, which is likely due to the effects of high-spin to low-spin crossover of Fe3+ in Pv. We highlight that such a change in Fe–Mg partitioning between Pv and Fp should have a strong influence on the physical properties of the deep lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akahama Y, Kawamura H (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys 96:3748–3751

    Article  Google Scholar 

  • Auzende AL, Badro J, Ryerson FJ, Weber PK, Fallon SJ, Addad A, Siebert J, Fiquet G (2008) Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet Sci Lett 269:164–174

    Article  Google Scholar 

  • Catalli K, Shim SH, Prakapenka V (2009) Thickness and Clapeyron slope of the post-perovskite boundary. Nature 462:782–785

    Article  Google Scholar 

  • Catalli K, Shim SH, Prakapenka VB, Zhao J, Sturhahn W, Chow P, Xiao Y, Liu H, Cynn H, Evans WJ (2010) Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties. Earth Planet Sci Lett 289:68–75

    Article  Google Scholar 

  • Catalli K, Shim SH, Dera P, Prakapenka VB, Zhao J, Sturhahn W, Chow P, Xiao Y, Cynn H, Evans WJ (2011) Effects of the Fe3+ spin transition on the properties of aluminous perovskite-New insights for lower-mantle seismic heterogeneities. Earth Planet Sci Lett 310:293–302

    Article  Google Scholar 

  • Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207

    Article  Google Scholar 

  • Fei Y, Zhang L, Corgne A, Watson H, Ricolleau A, Meng Y, Prakapenka V (2007) Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophys Res Lett 34:L17307

    Article  Google Scholar 

  • Fiquet G, Auzende AL, Siebert J, Corgne A, Bureau H, Ozawa H, Garbarino G (2010) Melting of peridotite to 140 gigapascals. Science 329:1516–1518

    Article  Google Scholar 

  • Frost DJ, Langenhorst F (2002) The effect of Al2O3 on Fe–Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth Planet Sci Lett 199:227–241

    Article  Google Scholar 

  • Frost DJ, Liebske C, Langenhorst F, McCammon CA, Trønnes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428:409–412

    Article  Google Scholar 

  • Fujino K, Miyajima N, Yagi T, Kondo T, Funamori N (1998) Analytical electron microscopy of the garnet-perovskite transformation in a laser-heated diamond anvil cell. In: Manghnani MH, Yagi T (eds) Properties of earth and planetary materials at high pressure and temperature. Geophys Monogr Ser, vol 101. AGU, Washington DC, pp 409–417

  • Fujino K, Nishio-Hamane D, Seto Y, Sata N, Nagai T, Shinmei T, Ishii H, Hiraoka N, Cai YQ, Tsuei K (2012) Spin transition of ferric iron in Al-bearing Mg-perovskite up to 200 GPa and its implication for the lower mantle. Earth Planet Sci Lett 317–318:407–412

    Article  Google Scholar 

  • Hirose K, Sata N, Komabayashi T, Ohishi Y (2008) Simultaneous volume measurements of Au and MgO to 140 GPa and thermal equation of state of Au based on the MgO pressure scale. Phys Earth Planet Inter 167:149–154

    Article  Google Scholar 

  • Hsu H, Blaha P, Cococcioni M, Wentzcovitch M (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys Rev Lett 106:118501

    Article  Google Scholar 

  • Irifune T (1994) Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature 370:131–133

    Article  Google Scholar 

  • Irifune T, Shinmei T, McCammon CA, Miyajima N, Rubie D, Frost DJ (2010) Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327:193–195

    Article  Google Scholar 

  • Jackson JM, Sturhahn W, Shen G, Zhao J, Hu MY, Errandonea D, Bass JD, Fei Y (2005) A synchrotron Mössbauer spectroscopy study of (Mg, Fe)SiO3 perovskite up to 120 GPa. Am Mineral 90:199–205

    Article  Google Scholar 

  • Jacobsen SD, Reichmann HJ, Spetzler HA, Mackwell SJ, Smyth JR, Angel RJ, McCammon CA (2002) Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J Geophys Res 107(B2):2037

    Article  Google Scholar 

  • Kesson SE, Fitz Gerald JD, Shelley JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393:252–255

    Article  Google Scholar 

  • Kobayashi Y, Kondo T, Ohtani E, Hirao N, Miyajima N, Yagi T, Nagase T, Kikegawa T (2005) Fe–Mg partitioning between (Mg, Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophys Res Lett 32:L19301

    Article  Google Scholar 

  • Li L, Brodholt JP, Stackhouse S, Weidner DJ, Alfredsson M, Price GD (2005a) Electronic spin state of ferric iron in Al-bearing perovskite in the lower mantle. Geophys Res Lett 32:L17307

    Article  Google Scholar 

  • Li L, Brodholt JP, Stackhouse S, Weidner DJ, Alfredsson M, Price GD (2005b) Elasticity of (Mg, Fe)(Si, Al)O3-perovskite at high pressure. Earth Planet Sci Lett 240:529–536

    Article  Google Scholar 

  • Lin JF, Tsuchiya T (2008) Spin transition of iron in the Earth’s lower mantle. Phys Earth Planet Inter 170:248–259

    Article  Google Scholar 

  • Lin JF, Vankό G, Jacobsen SD, Iota V, Struzhkin VV, Prakapenka VB, Kuznetsov A, Yoo C (2007) Spin transition zone in Earth’s lower mantle. Science 317:1740–1743

    Article  Google Scholar 

  • Manthilake GM, de Koker N, Frost DJ, McCammon CA (2011) Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core. Proc Natl Acad Sci USA 108:17901–17904

    Article  Google Scholar 

  • Mao HK, Shen G, Hemley RJ (1997) Multivariable dependence of Fe–Mg partitioning in the lower mantle. Science 278:2098–2100

    Article  Google Scholar 

  • McCammon C (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387:694–696

    Article  Google Scholar 

  • McCammon CA, Stachel T, Harris JW (2004) Iron oxidation state in lower mantle mineral assemblages II. Inclusions in diamonds from Kankan, Guinea. Earth Planet Sci Lett 222:423–434

    Article  Google Scholar 

  • Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett 32:L03304

    Article  Google Scholar 

  • Nakajima Y, Frost DJ, Rubie DC (2012) Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth’s lower mantle. J Geophys Res 117:B08201

    Article  Google Scholar 

  • Nishiyama N, Yagi T (2003) Phase relation and mineral chemistry in pyrolite to 2200 ºC under the lower mantle pressures and implications for dynamics of mantle plumes. J Geophys Res 108(B5):2255

    Article  Google Scholar 

  • Nishiyama N, Irifune T, Inoue T, Ando J, Funakoshi K (2004) Precise determination of phase relations in pyrolite across the 660 km seismic discontinuity by in situ X-ray diffraction and quench experiments. Phys Earth Planet Inter 143–144:185–199

    Article  Google Scholar 

  • Ohta K, Onoda S, Hirose K, Sinmyo R, Shimizu K, Sata N, Ohishi Y, Yasuhara A (2008) The electrical conductivity of post-perovskite in Earth’s D” layer. Science 320:89–91

    Article  Google Scholar 

  • Ozawa H, Hirose K, Mitome M, Bando Y, Sata N, Ohishi Y (2009) Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core. Phys Chem Miner 36:355–363

    Article  Google Scholar 

  • Ricolleau A, Fei Y, Cottrell E, Watson H, Deng L, Zhang L, Fiquet G, Auzende AL, Roskosz L, Morard G, Prakapenka V (2009) Density profile of pyrolite under the lower mantle conditions. Geophys Res Lett 36:L06302

    Article  Google Scholar 

  • Sinmyo R, Hirose K (2010) The Soret diffusion in laser-heated diamond-anvil cell. Phys Earth Planet Inter 180:172–178

    Article  Google Scholar 

  • Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K, Sata N, Ohishi Y (2008) Partitioning of iron between perovskite/post-perovskite and ferropericlase in the lower mantle. J Geophys Res 113:B11204

    Article  Google Scholar 

  • Sinmyo R, Hirose K, Muto S, Ohishi Y, Yasuhara A (2011) The valence state and partitioning of iron in the Earth’s lowermost mantle. J Geophys Res 116:B07205

    Article  Google Scholar 

  • Stackhouse S, Brodholt JP, Price GD (2006) Elastic anisotropy of FeSiO3 end-members of the perovskite and post-perovskite phases. Geophys Res Lett 33:L01304

    Article  Google Scholar 

  • Stackhouse S, Brodholt JP, Price GD (2007) Electric spin transitions in iron-bearing MgSiO3 perovskite. Earth Planet Sci Lett 253:282–290

    Article  Google Scholar 

  • Tateno S, Sinmyo R, Hirose K, Nishioka H (2009) The advanced ion-milling method for preparation of thin film using ion slicer: application to a sample recovered from diamond-anvil cell. Rev Sci Instrum 80:013901

    Article  Google Scholar 

  • Wood BJ (2000) Phase transitions and partitioning relations in peridotite under lower mantle conditions. Earth Planet Sci Lett 174:341–354

    Article  Google Scholar 

  • Wood BJ, Rubie DC (1996) The effect of alumina on phase transitions at the 660-kilometer discontinuity from Fe–Mg partitioning experiments. Science 273:1522–1524

    Article  Google Scholar 

  • Xu Y, McCammon C, Poe BT (1998) The effect of Alumina on the electrical conductivity of silicate perovskite. Science 282:922–924

    Article  Google Scholar 

  • Yamazaki D, Karato S (2002) Fabric development in (Mg, Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Phys Earth Planet Inter 131:251–267

    Article  Google Scholar 

  • Yamazaki D, Yoshino T, Matsuzaki T, Katsura T, Yoneda A (2009) Texture of (Mg, Fe)SiO3 perovskite and ferro-periclase aggregate: implications for rheology of the lower mantle. Phys Earth Planet Inter 174:138–144

    Article  Google Scholar 

  • Zhang F, Oganov AR (2006) Mechanism of Al3+ incorporation in MgSiO3 post-perovskite at high pressures. Earth Planet Sci Lett 248:69–76

    Article  Google Scholar 

Download references

Acknowledgments

R. S. was supported by a Research Fellowship for Young Scientists and a Postdoctoral Fellowship for Research Abroad, granted by JSPS. Review comments by two anonymous referees and editor helped significantly in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Sinmyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinmyo, R., Hirose, K. Iron partitioning in pyrolitic lower mantle. Phys Chem Minerals 40, 107–113 (2013). https://doi.org/10.1007/s00269-012-0551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0551-7

Keywords

Navigation