Skip to main content
Log in

A mapping of the electron localization function for earth materials

  • Original papers
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The electron localization function, ELF, generated for a number of geometry-optimized earth materials, provides a graphical representation of the spatial localization of the probability electron density distribution as embodied in domains ascribed to localized bond and lone pair electrons. The lone pair domains, displayed by the silica polymorphs quartz, coesite and cristobalite, are typically banana-shaped and oriented perpendicular to the plane of the SiOSi angle at ~0.60 Å from the O atom on the reflex side of the angle. With decreasing angle, the domains increase in magnitude, indicating an increase in the nucleophilic character of the O atom, rendering it more susceptible to potential electrophilic attack. The Laplacian isosurface maps of the experimental and theoretical electron density distribution for coesite substantiates the increase in the size of the domain with decreasing angle. Bond pair domains are displayed along each of the SiO bond vectors as discrete concave hemispherically-shaped domains at ~0.70 Å from the O atom. For more closed-shell ionic bonded interactions, the bond and lone pair domains are often coalesced, resulting in concave hemispherical toroidal-shaped domains with local maxima centered along the bond vectors. As the shared covalent character of the bonded interactions increases, the bond and lone pair domains are better developed as discrete domains. ELF isosurface maps generated for the earth materials tremolite, diopside, talc and dickite display banana-shaped lone pair domains associated with the bridging O atoms of SiOSi angles and concave hemispherical toroidal bond pair domains associated with the nonbridging ones. The lone pair domains in dickite and talc provide a basis for understanding the bonded interactions between the adjacent neutral layers. Maps were also generated for beryl, cordierite, quartz, low albite, forsterite, wadeite, åkermanite, pectolite, periclase, hurlbutite, thortveitite and vanthoffite. Strategies are reviewed for finding potential H docking sites in the silica polymorphs and related materials. As observed in an earlier study, the ELF is capable of generating bond and lone pair domains that are similar in number and arrangement to those provided by Laplacian and deformation electron density distributions. The formation of the bond and lone pair domains in the silica polymorphs and the progressive decrease in the SiO length as the value of the electron density at the bond critical point increases indicates that the SiO bonded interaction has a substantial component of covalent character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bader RFW, MacDougall PJ, Lau CDH (1984) Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity. J Amer Chem Soc 106:1594–1605

    Article  CAS  Google Scholar 

  • Bader RFW, Essén H (1984) The characterizations of atomic interactions. J Chem Phys 80:1943–1960

    CAS  Google Scholar 

  • Bader RFW, MacDougall PJ (1985) Toward a theory of chemical reactivity based on charge density. J Amer Chem Soc 107:6788–6795

    Article  CAS  Google Scholar 

  • Bader RFW, Gillespie RJ, MacDougall PJ (1988) A physical basis for the VSEPR model of molecular geometry. J Amer Chem Soc 110:7329–7336

    Article  CAS  Google Scholar 

  • Bader RFW (1990) Atoms in molecules. Oxford Science Publications Oxford, pp 1–438

    Google Scholar 

  • Bader RFW, Johnson S, Tang TH, Popelier PLA (1996) The electron pair. J Phys Chem 100:15398–15415

    Article  CAS  Google Scholar 

  • Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem 100:15398-15415

    Article  Google Scholar 

  • Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  • Boily JF (2003) AIM and ELF analyses and Gas phase acidities of some main group oxyanions (H2XO4, X = Cl, S, P, Si and Br, Se, As, Ge). J Phys Chem A 107:4276–4285

    Article  CAS  Google Scholar 

  • Bragg WL, Claringbull GF, Taylor WH (1965) Crystal structures of minerals. Cornell University Press, Ithaca, pp 1–409

    Google Scholar 

  • Brown GE, Gibbs GV (1969) The nature and variation in length of the Si-O and Al-O bonds in framework silicates. Amer Mineral 54:1044–1061

    CAS  Google Scholar 

  • Burdett JK, McCormick TA (1998) Electron localization in molecules and solids: The meaning of ELF. J Phys Chem A 102:6366–6372

    Article  CAS  Google Scholar 

  • Chesnut DB (2000) An electron localization function study of the lone pair. J Phys Chem A 104:11644–11650

    Article  CAS  Google Scholar 

  • Dera P, Prewitt CT, Stefanie J, Bish DL, Johnston CT (2003) Pressure–controlled polytypism in hydrous layered materials. Amer Mineral 88:1428–1435

    CAS  Google Scholar 

  • Downs JW (1995) The electron density distribution of coesite. J Phys Chem 99:6849–6856

    Article  CAS  Google Scholar 

  • Gibbs GV, Downs JW, Boisen MB Jr (1994) The elusive SiO bond vol 29: reviews in Mineralogy. Mineralogical Society of America pp 331–368

    Google Scholar 

  • Gibbs GV, Rosso KM, Teter DM Boisen MB, Bukowinski MST (1999) Model structures and properties of the electron density distribution for low quartz at pressure: a study of the SiO bond. J Mole Struct 485:13–25

    Article  Google Scholar 

  • Gibbs GV, Boisen MB, Rosso KM, Teter DM, Bukowinski MST (2000) Model structures and electron density distributions of the silica polymorph coesite at pressure: An assessment of OO bonded interactions. J Phys Chem B 104:10534–10542

    Article  CAS  Google Scholar 

  • Gibbs GV, Boisen MB, Beverly LL, Rosso KM (2001) A computational quantum chemical study of the bonded interactions in earth materials and structurally and chemically related molecules, Molecular modeling theory: applications in the geosciences. Reviews in Mineralogy and Geochemistry, vol 42, (eds) Cygan RT, Kubicki JD, Series Ed. J.J. Rosso Mineralogical Society of America, Washington, DC 345–382

  • Gibbs GV, Cox DF, Crawford TD, Boisen MB, Lim M (2002) A mapping of the electron localization function for the silica polymorphs: evidence for domains of electron pairs and sites of potential electrophilic attack. Phys Chem Miner 29:307–318

    Article  CAS  Google Scholar 

  • Gibbs GV, Cox DF, Boisen MB, Downs RT, Ross NL (2003a) The electron localization function: a tool for locating favorable proton docking sites in the silica polymorphs. Phys Chem Miner 30:305–316

    CAS  Google Scholar 

  • Gibbs GV, Whitten EW, Spackman MA, Stimp M, Downs RT, Carducci MD (2003b) An exploration of theoretical and experimental electron density distributions and SiO bonded interactions for the silica polymorph coesite. J Phys Chem B 108:12996–13006

    Article  Google Scholar 

  • Gibbs GV, Cox DF, Ross NL (2004a) A modelling of the structure and favorable H-docking sites and defects for the high pressure silica polymorphs stishovite. Phys Chem Miner 31:232–239

    Article  CAS  Google Scholar 

  • Gibbs GV, Cox DF, Rosso KM (2004b) A connection between empirical bond strength and the localization of the electron density at the bond critical points of the SiO bonds in silicates. J Phys Chem A 108:7643–7645

    Article  CAS  Google Scholar 

  • Gibbs GV, Cox DF, Rosso KM, Kirfel A, Lippmann T, Blaha P, Schwarz K (2005) Experimental and theoretical bond critical point properties for model electron density distributions for earth materials. Phys Chem Miner (in press)

  • Gillespie RJ (1970) The valence - shell electron pair model of molecular geometry. J Chem Edu 47:18–23

    CAS  Google Scholar 

  • Gillespie RJ, Johnson SA (1997) Study of bond angles and bond lengths in disiloxane and related molecules in terms of the topology of the electron density and its Laplacian. Inorg Chem 36:3031-3039

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York, pp 1–303

    Google Scholar 

  • Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure natural, T=298 K. Eur J Mineral 2:63–77

    CAS  Google Scholar 

  • Kirfel A, Krane HG, Blaha P, Scwartz K, Lippmann T (2001) Electron density distribution in stishovite, SiO2: a high energy synchrotron radiation study. Acta Crystallogr A 57:663–677

    Article  CAS  PubMed  Google Scholar 

  • Kirfel A, Lippmann T, Blaha P, Schwarz K, Cox DF, Rosso KM, Gibbs GV (in press) Electron density distribution and bond critical point properties for forsterite, Mg2SiO4, determined with high energy synchrotron radiation data. Phys Chem Miner

  • Koch-Müller M, Fei Y, Hauri E, Liu Z (2001) Location and qualitative analysis of OH in coesite. Phys Chem Miner 28:693–705

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1999) Vienna Ab-initio simulation package. Technische Universität Wien, Wien 1:1–120

  • Kresse G, Hafner J (1953) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  Google Scholar 

  • Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  • Lewis GN (1966) Valence and the structure of atoms and molecules. Dover Press, New York

    Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Pawley AR, McMillian PF, Holloway JR (1963) Hydrogen in stishovite with impurities for mantle water content. Struct Chem 261:1024–1026

    Google Scholar 

  • Prewitt CT (1967) Refinement of the structure of pectolite, Ca2NaHSi3O9. Zeits Krist 125:298–316

    CAS  Google Scholar 

  • Savin A, Becke AD, Flad J, Nesper R, Preuss H, von Scnering HG (1991) A new look at electron localization. Angew Chem Ind Ed Engl 30:409–412

    Article  Google Scholar 

  • Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Scnering HG (1992) Electron localization in solid state structures of the elements: the diamond structure. Angew Chem Ind Ed Engl 31:187–188

    Article  Google Scholar 

  • Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: The electron localization function. Angew Chem Ind Ed Engl 36:1808–1832

    Article  CAS  Google Scholar 

  • Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature Lond 371:683–686

    Article  CAS  Google Scholar 

  • Silvi B, Savin A, Wagner FR (1997) The nature of silicon oxygen bonds in silica polymorphs. In: Silvi B, D’Arco P (eds) Modeling of minerals and silicated materials. Kluwer Academic Publishers, Dortrecht, pp 179–199

    Google Scholar 

  • Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199-3204

    Article  CAS  Google Scholar 

  • Smyth JR, Swope RJ, Pawley AR (1995) H in rutile type compounds: II Crystal chemistry of Al substitutions in H–bearing stishovite. Amer Mineral 80:454–4560

    CAS  Google Scholar 

  • Takéuchi Y, Kudoh Y (1977) Hydrogen bonding and cation ordering in Magnet Cove pectolite. Zeits Krist 146:281–292

    Google Scholar 

  • Terriberry TB, Cox DF, Bowman DA (2002) A tool for the interactive 3D visualization of electronic structure in molecules and solids. Comput Chem 26:313–319

    Article  CAS  PubMed  Google Scholar 

  • Trout BL, Parrinello M (1999) Analysis of the dissolution of H2O using first-principles molecular dynamics. J Phys Chem B 103:7340–7345

    Article  CAS  Google Scholar 

  • Vanderbilt D (1990) Soft self–consistent psuedopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  • Warren BE (1927) The structure of tremolite, H2Ca2Mg5(SiO3)8. Zeits Krist 72:42–57

    Google Scholar 

Download references

Acknowledgements

The National Science Foundations (Grants EAR-0229472, NLR and GVG), The US Department of Energy (Grant DE-FG02-03Er14751, JD Rimstidt and GVG) and The Chemical Sciences, Geosciences, Office of Basic Energy Sciences (Grant DE-FG02-97ER14751, DFC) are thanked for generously supporting this work. This study was also generously supported by the National Computational Science Alliance under a SURA Block Grant (Project ndg), utilizing the IBM p690 at the National Center for Supercomputing Applications. Dr. Robert T. Downs of the University of Arizona reviewed the paper and is thanked for making a number of valuable suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Gibbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, G.V., Cox, D.F., Ross, N.L. et al. A mapping of the electron localization function for earth materials. Phys Chem Minerals 32, 208–221 (2005). https://doi.org/10.1007/s00269-005-0463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0463-x

Keywords

Navigation