Skip to main content
Log in

Lipocalin-2 is Associated With a Good Prognosis and Reversing Epithelial-to-Mesenchymal Transition in Pancreatic Cancer

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Lipocalin-2 is a multifaceted modulator in cancer progression. Its clinical significance is not clear in pancreatic cancer. The purpose of this study was to investigate whether lipocalin-2 is associated with good prognosis by reversing epithelial-to-mesenchymal transition (EMT) in pancreatic cancer.

Methods

Lipocalin-2, E-cadherin, or vimentin expression was detected in 60 pancreatic adenocarcinoma specimens. Correlations between lipocalin-2 expression and EMT, the clinicopathologic characteristics, and prognosis were investigated. Whether pancreatic cancer cells’ migration and invasion (some characteristics of EMT) were affected by lipocalin-2 was also explored.

Results

High lipocalin-2 expression was significantly associated with a good prognosis in pancreatic cancer (p < 0.05). Overexpression of lipocalin-2 correlated with a lower extent of EMT (p < 0.05), increased E-cadherin expression (p < 0.05), decreased vimentin expression (p < 0.05), and reduced cancer cell migration and invasion in pancreatic cancer.

Conclusions

Lipocalin-2 may be considered an epithelial inducer, which may reverse EMT and predict a good prognosis in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Gounaris I, Zaki K, Corrie P (2010) Options for the treatment of gemcitabine-resistant advanced pancreatic cancer. JOP 11:113–123

    PubMed  Google Scholar 

  3. Yu X, Zhang Y, Chen C et al (2010) Targeted drug delivery in pancreatic cancer. Biochim Biophys Acta 1805:97–104

    PubMed  CAS  Google Scholar 

  4. Bhutia YD, Hung SW, Patel B et al (2011) CNT1 expression influences proliferation and chemosensitivity in drug-resistant pancreatic cancer cells. Cancer Res 71:1825–1835

    Article  PubMed  CAS  Google Scholar 

  5. Roy LD, Sahraei M, Subramani DB et al (2011) MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 30:1449–1459

    Article  PubMed  CAS  Google Scholar 

  6. Kikuta K, Masamune A, Watanabe T et al (2010) Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun 403:380–384

    Article  PubMed  CAS  Google Scholar 

  7. Iwatsuki M, Mimori K, Yokobori T et al (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101:293–299

    Article  PubMed  CAS  Google Scholar 

  8. Dubois-Marshall S, Thomas JS, Faratian D et al (2011) Two possible mechanisms of epithelial to mesenchymal transition in invasive ductal breast cancer. Clin Exp Metastasis 28:811–818

    Article  PubMed  CAS  Google Scholar 

  9. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33

    Article  PubMed  Google Scholar 

  10. Al Saleh S, Sharaf LH, Luqmani YA (2011) Signalling pathways involved in endocrine resistance in breast cancer and associations with epithelial to mesenchymal transition. Int J Oncol 38:1197–1217

    PubMed  CAS  Google Scholar 

  11. Yori JL, Johnson E, Zhou GJ et al (2010) Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem 285:16854–16863

    Article  PubMed  CAS  Google Scholar 

  12. Grandclement C, Pallandre JR, Valmary Degano S et al (2011) Neuropilin-2 expression promotes TGF-beta1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One 6:e20444

    Article  PubMed  CAS  Google Scholar 

  13. Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27:6958–6969

    Article  PubMed  CAS  Google Scholar 

  14. Peinado H, Olmeda D, Cano A (2007) Snail, ZEB and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428

    Article  PubMed  CAS  Google Scholar 

  15. Lander R, Nordin K, LaBonne C (2011) The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1. J Cell Biol 194:17–25

    Article  PubMed  CAS  Google Scholar 

  16. Hanai JI (2005) Reversing EMT. Kidney Int 68:1970–1970

    Google Scholar 

  17. Vaid M, Singh T, Katiyar SK (2011) Grape seed proanthocyanidins inhibit melanoma cell invasiveness by reduction of PGE2 synthesis and reversal of epithelial-to-mesenchymal transition. PLoS One 6:e21539

    Article  PubMed  CAS  Google Scholar 

  18. Hanai J, Mammoto T, Seth P et al (2005) Lipocalin 2 diminishes invasiveness and metastasis of Ras-transformed cells. J Biol Chem 280:13641–13647

    Article  PubMed  CAS  Google Scholar 

  19. Gwira JA, Wei F, Ishibe S et al (2005) Expression of neutrophil gelatinase-associated lipocalin regulates epithelial morphogenesis in vitro. J Biol Chem 280:7875–7882

    Article  PubMed  CAS  Google Scholar 

  20. Flo TH, Smith KD, Sato S et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921

    Article  PubMed  CAS  Google Scholar 

  21. Lee HJ, Lee EK, Lee KJ et al (2006) Ectopic expression of neutrophil gelatinase-associated lipocalin suppresses the invasion and liver metastasis of colon cancer cells. Int J Cancer 118:2490–2497

    Article  PubMed  CAS  Google Scholar 

  22. Hiromoto T, Noguchi K, Yamamura M et al (2011) Up-regulation of neutrophil gelatinase-associated lipocalin in oral squamous cell carcinoma: relation to cell differentiation. Oncol Rep 26:1415–1421

    PubMed  CAS  Google Scholar 

  23. Tong Z, Chakraborty S, Sung B et al (2011) Epidermal growth factor down-regulates the expression of neutrophil gelatinase-associated lipocalin (NGAL) through E-cadherin in pancreatic cancer cells. Cancer 117:2408–2418

    Article  CAS  Google Scholar 

  24. Zhou XH (2007) Analysis of prognostic factors and roles of EMT in human pancreatic cancers. Chinese master thesis, Fudan University, p 9

  25. Xu B, Zheng WY, Jin DY et al (2012) Treatment of pancreatic cancer using an oncolytic virus harboring the lipocalin-2 gene. Cancer 118:5217–5226

    Article  PubMed  CAS  Google Scholar 

  26. Saad AG, Yeap BY, Thunnissen FB et al (2008) Immunohistochemical markers associated with brain metastases in patients with nonsmall cell lung carcinoma. Cancer 113:2129–2138

    Article  PubMed  Google Scholar 

  27. Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5:R217–R222

    Article  PubMed  CAS  Google Scholar 

  28. Rubin MA, Mucci NR, Figurski J et al (2001) E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol 32:690–697

    Article  PubMed  CAS  Google Scholar 

  29. Brzozowska A, Sodolski T, Duma D et al (2012) Evaluation of prognostic parameters of E-cadherin status in breast cancer treatment. Ann Agric Environ Med 19:541–546

    PubMed  Google Scholar 

  30. Liu X, Wang C, Chen Z et al (2011) MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 440:23–31

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez CA, Yan L, Louis G et al (2005) The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res 11:5390–5395

    Article  PubMed  CAS  Google Scholar 

  32. Yang J, Moses MA (2009) Lipocalin 2: a multifaceted modulator of human cancer. Cell Cycle 8:2347–2352

    Article  PubMed  CAS  Google Scholar 

  33. Kehrer JP (2010) Lipocalin-2: pro- or anti-apoptotic? Cell Biol Toxicol 26:83–89

    Article  PubMed  CAS  Google Scholar 

  34. Bolignano D, Donato V, Lacquaniti A et al (2010) Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett 288:10–16

    Article  PubMed  CAS  Google Scholar 

  35. Carlson SK, Classic KL, Hadac EM et al (2009) Quantitative molecular imaging of viral therapy for pancreatic cancer using an engineered measles virus expressing the sodium-iodide symporter reporter gene. AJR Am J Roentgenol 192:279–287

    Article  PubMed  Google Scholar 

  36. Ramirez PJ, Vickers SM, Ono HA et al (2008) Optimization of conditionally replicative adenovirus for pancreatic cancer and its evaluation in an orthotopic murine xenograft model. Am J Surg 195:481–490

    Article  PubMed  Google Scholar 

  37. Watanabe I, Kasuya H, Nomura N et al (2008) Effects of tumor selective replication-competent herpes viruses in combination with gemcitabine on pancreatic cancer. Cancer Chemother Pharmacol 61:875–882

    Article  PubMed  CAS  Google Scholar 

  38. Venkatesha S, Hanai J, Seth P et al (2006) Lipocalin 2 antagonizes the proangiogenic action of ras in transformed cells. Mol Cancer Res 4:821–829

    Article  PubMed  CAS  Google Scholar 

  39. Robstad KA, Choate JD, Sheehan CE et al (2010) Prognostic implications of cytoplasmic and nuclear overexpression of lipocalin-2/NGAL in colorectal adenocarcinoma (CRC). Lab Invest 90:722

    Google Scholar 

  40. Liao CJ, Huang YH, Au HK et al (2012) The cancer marker neutrophil gelatinase-associated lipocalin is highly expressed in human endometrial hyperplasia. Mol Biol Rep 39:1029–1036

    Article  PubMed  CAS  Google Scholar 

  41. Cavalcante RB, Lopes FF, Ferreira AS et al (2007) Immunohistochemical expression of vimentin, calponin and HHF-35 in salivary gland tumors. Braz Dent J 18:192–197

    Article  PubMed  Google Scholar 

  42. Gao YF, Li T, Chang Y et al (2011) Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol 13:924–933

    Article  PubMed  CAS  Google Scholar 

  43. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81001007), the Program for Young Excellent Talents in Tongji University (2008KJ060), and Youth Fund of the Shanghai 10th People’s Hospital (10RQ105).

Conflict of interest

There are no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Xu or Dan-Song Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Jin, DY., Lou, WH. et al. Lipocalin-2 is Associated With a Good Prognosis and Reversing Epithelial-to-Mesenchymal Transition in Pancreatic Cancer. World J Surg 37, 1892–1900 (2013). https://doi.org/10.1007/s00268-013-2009-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-013-2009-6

Keywords

Navigation