Skip to main content
Log in

Is sexual monomorphism a predictor of polygynandry? Evidence from a social mammal, the collared peccary

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Sexual dimorphism is common in polygynous species, and there is clear evidence that both intra-sexual competition and female preferences can drive the evolution of large body size in males. In contrast, sexual monomorphism is often argued to reflect a relaxation of male mate competition or an intensification of resource competition among females. Alternatively, it might imply opportunities for females to circumvent or counteract male mate competition in a polygynandrous mating system. We test the prediction that sexual monorphism is associated with polygynandry in the collared peccary (Pecari tajacu, Tayassuidae), a social ungulate closely related to the old-world suids. The genetic mating system in the Tayassuidae is unknown, but its sexual monomorphism presents a striking contrast to the strong size dimorphism found in most Suidae, so that a departure from the polygynous system common in Suidae would be noteworthy. We characterized genetic relationships among adults within herds in three geographically distinct populations, assigned parents to 75 offspring, and tested for skew in individual reproductive success. Parentage assignment data indicated that multiple males sire offspring within a herd, and in the population for which genetic data were most complete, 19% of parentage assignments were potentially sired by extra-herd males. Some litters have multiple sires, and neither males nor females monopolized reproduction, even in small herds. This result supports our prediction and suggests that sexual monomorphism may either select for or be an evolutionary consequence of a promiscuous mating system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander LJ, Rohrer GA, Beattie CW (1996) Cloning and characterization of 414 polymorphic porcine microsatellites. Anim Genet 27:137–148

    Article  PubMed  CAS  Google Scholar 

  • Andersson M (1994) Sexual selection. In: Krebs JR, Clutton-Brock TH (eds) Monographs in behavior and ecology. Princeton University Press, Princeton

    Google Scholar 

  • Archibald AL, Haley CS, Brown JF, Couperwhite S, McQueen HA, Nicholson D, Coppieters W, Van de Weghe A, Stratil A, Winterø AK et al (1995) The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome 6:157–175

    Article  PubMed  CAS  Google Scholar 

  • Babbitt KJ, Packard JM (1990) Suckling behavior of the collared peccary (Tayassu tajacu). Ethology 86:102–115

    Article  Google Scholar 

  • Bissonette JA (1982) Social behavior and ecology of the collared peccary in Big Bend National Park. National Park Service Science Monograph Number 16, p 85

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Article  Google Scholar 

  • Byers JA, Bekoff M (1981) Social, spacing, and cooperative behavior of the collared peccary. J Mammal 62:767–785

    Article  Google Scholar 

  • Clutton-Brock TH (2007) Sexual selection in males and females. Science 21:1882–1885

    Article  Google Scholar 

  • Clutton-Brock TH, Parker GA (1995) Sexual coercion in animal societies. Anim Behav 49:1345–1365

    Article  Google Scholar 

  • Clutton-Brock TH, Harvey PH, Rudder B (1977) Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature 269:797–800

    Article  PubMed  CAS  Google Scholar 

  • Cooper JD (2009) Using genetic data to characterize dispersal patterns, relatedness and parentage in the collared peccary (Pecari tajacu). Dissertation, Purdue University

  • Cooper JD, Vitalis R, Waser PM, Gopurenko D, Hellgren EC, Gabor TM, DeWoody JA (2010) Quantifying male-biased dispersal among social groups in the collared peccary (Pecari tajacu) using analyses based on mtDNA variation. Heredity 104:79–87

    Article  PubMed  CAS  Google Scholar 

  • Day GI (1985) Javelina research and management in Arizona. Arizona Game and Fish Department, Phoenix

    Google Scholar 

  • Delgado R, Fernandez-Llario P, Azevedo M, Beja-Pereira A, Santos P (2008) Paternity assessment in free-ranging wild boar (Sus scrofa)—are littermates full-sibs? Mamm Biol 73:169–176

    Article  Google Scholar 

  • Dobson FS, Smith AT, Wang XG (1998) Social and ecological influences on dispersal and philopatry in the plateau pika (Ochotona curzoniae). Behav Ecol 9:622–635

    Article  Google Scholar 

  • Dugdale HL, MacDonald DW, Pope LC, Johnson PJ, Burke T (2008) Reproductive skew and relatedness in social groups of European badgers, Meles meles. Mol Ecol 17:1815–1827

    Article  PubMed  Google Scholar 

  • Dunham AE, Rudolf VHW (2009) Evolution of sexual size monomorphism: the influence of passive mate guarding. J Evol Biol 22:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H, Chowdhary BP, Johansson M, Marklund L, Fredholm M, Gustavsson I, Andersson L (1994) A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137:1089–1100

    PubMed  CAS  Google Scholar 

  • Ellisor JE, Harwell WF (1969) Mobility and home range of collared peccary in southern Texas. J Wildl Manage 33:425–427

    Article  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection and the evolution of mating systems. Science 197:215–223

    Article  PubMed  CAS  Google Scholar 

  • Estes RD (1991) The behavior guide to African mammals: including hoofed mammals, carnivores, primates. University of California Press, Berkeley, pp 211–221

    Google Scholar 

  • Gabor TM, Hellgren EC (2000) Variation in peccary populations: landscape composition or competition by an invader? Ecology 81:2509–2525

    Article  Google Scholar 

  • Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Method Enzymol 395:202–222

    Article  CAS  Google Scholar 

  • Gongora J, Chen Y, Bernal JE, Nicholas FW, Moran C (2002) Interspecific amplification of peccary microsatellite markers using porcine primers. Anim Genet 33:312–314

    Article  PubMed  CAS  Google Scholar 

  • Gowaty PA, Hubbell SP (2005) Chance, time allocation, and the evolution of adaptively flexible sex role behavior. Integr Comp Biol 45:931–944

    Article  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Griffith SC, Owens IPF, Thuman KA (2002) Extra-pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behavior, I & II. J Theor Biol 7:1–52

    Article  PubMed  CAS  Google Scholar 

  • Hamilton MB, Pincus EL, Di Fiore A, Flesher RC (1999) A universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507

    PubMed  CAS  Google Scholar 

  • Hampton J, Pluske JR, Spencer PBS (2004) A preliminary genetic study of the social biology of feral pigs in south-western Australia and the implications for management. Wildlife Research 31:375–381

    Article  Google Scholar 

  • Hellgren EC, Lochmiller RL, Amoss MS, Seager SWJ, Magyar SJ, Coscarelli KP, Grant WE (1989) Seasonal variation in serum testosterone, testicular measurements, and semen characteristics in the collared peccary (Tayassu tajacu). J Reprod Fertil 85:677–686

    Article  PubMed  CAS  Google Scholar 

  • Hellgren EC, Synatszke DR, Oldenburg PW, Guthery FS (1995) Demography of a collared peccary population in south Texas. J Wildl Manage 59:153–163

    Article  Google Scholar 

  • Herring SW (1972) The role of canine morphology in the evolutionary divergence of pigs and peccaries. J Mammal 53:500–512

    Article  Google Scholar 

  • Jarman PJ (1983) Mating system and sexual dimorphism in large, terrestrial, mammalian herbivores. Biol Rev 58:485–520

    Article  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Lochmiller RL, Hellgren EC, Grant WE (1984) Selected aspects of collared peccary (Dicotyles tajacu) reproductive biology. Zoo Biol 3:145–149

    Article  Google Scholar 

  • Lochmiller RL, Hellgren EC, Grant WE (1986) Absolute and allometric relationships between internal morphology and body mass in the adult collared peccary, Tayassu tajacu (Tayassuidae). Growth 50:296–316

    PubMed  CAS  Google Scholar 

  • Lochmiller RL, Hellgren EC, Grant WE (1987) Physical characteristics of neonate, juvenile, and adult collared peccaries (Tayassu tajacu angulatus) from South Texas. J Mammal 68:188–194

    Article  Google Scholar 

  • Lowden S, Finlayson HA, Macdonald AA, Downing AC, Goodman SJ, Leus K, Kaspe L, Wahyuni E, Archibald AL (2002) Application of Sus scrofa microsatellite markers to wild suiformes. Conserv Genet 3:347–350

    Article  CAS  Google Scholar 

  • Mauget R, Campan R, Spitz F, Dardaillon M, Goneau G, Pepin D (1984) Synthe`se des connaissances actuelles sur la biologie du sanglier, perspectives de recherche. Symp Int sur le sanglier, Colloque INRA 22:15–50

    Google Scholar 

  • Mauget R, Feer F, Henry O, Dubost G (1997) Hormonal and behavioural monitoring of ovarian cycles in peccaries. Proceedings of the First International Symposium on Physiology and Ethology of Wild and Zoo Animals Suppl. II, Berlin, 145–149

  • Nonacs P (2000) Measuring and using skew in the study of social behavior and evolution. Am Nat 156:577–589

    Article  Google Scholar 

  • Olson LE, Blumstein DT (2009) A trait-based approach to understand the evolution of complex coalitions in male mammals. Behav Ecol 20:624–632

    Article  Google Scholar 

  • Packard JM, Babbitt KJ, Franchek KM, Pierce PM (1991) Sexual competition in captive collared peccaries (Tayassu tajacu). Appl Anim Behav Science 29:319–326

    Article  Google Scholar 

  • Perez-Barberia FJ, Gordon IJ, Page Ml (2002) The origins of sexual dimorphism in body size in ungulates. Evolution 56:1276–1285

    PubMed  CAS  Google Scholar 

  • Poteaux C, Baubet E, Kaminski G, Brandt S, Dobson FS, Baudoin C (2009) Socio-genetic structure and mating system of a wild boar population. J Zool 278:116–125

    Article  Google Scholar 

  • Puppe B (1998) Effects of familiarity and relatedness on agonistic pair relationships in newly mixed domestic pigs. Appl Anim Behav Science 58:233–239

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic-markers. Evolution 43:258–275

    Article  Google Scholar 

  • Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW (1994) A microsatellite linkage map of the porcine genome. Genetics 36:231–245

    Google Scholar 

  • Schulte-Hostedde AI, Millar JS, Gibbs HL (2004) Sexual selection and mating patterns in a mammal with female-biased sexual size dimorphism. Behav Ecol 15:351–356

    Article  Google Scholar 

  • Silk J (2002) Kin selection in primate groups. Int J Primatol 23:849–875

    Article  Google Scholar 

  • Smuts BB, Smuts RW (1993) Male aggression and sexual coercion of females in nonhuman primates and other mammals: evidence and theoretical implications. Adv Stud Behav 22:1–63

    Article  Google Scholar 

  • Somers MJ, Rasa OAE, Penzhorn BL (1995) Group-structure and social-behavior of warthogs Phacochoerus aethiopicus. Acta Theriol 40:257–281

    Google Scholar 

  • Sowls LK (1974) Social behavior of the collared peccary Dicotyles tajacu. In: Geist V, Walther F (eds) The behavior of ungulates and its relation to management. International Union for the Conservation of Nature, Morges, pp 144–165

    Google Scholar 

  • Sowls LK (1978) Collared peccary. In: Schmidt JL, Gilbert DL (eds) Big game of North America. Stackpole Books, Harrisburg, pp 191–205

    Google Scholar 

  • Sowls LK (1997) The peccaries. Texas A&M, College Station

    Google Scholar 

  • Spencer P, Lapidge S, Hampton J, Pluske J (2005) The socio-genetic structure of a controlled feral pig population. Wildlife Res 32:297–304

    Article  Google Scholar 

  • Stockley P (2003) Female multiple mating behaviour, early reproductive failure and litter size variation in mammals. Proc R Soc B 270:271–278

    Article  PubMed  CAS  Google Scholar 

  • Stookey JM, Gonyou HW (1998) Recognition in swine: recognition through familiarity or genetic relatedness? Appl Anim Behav Science 55:291–305

    Article  Google Scholar 

  • Theimer TC, Keim P (1994) Geographic patterns of mitochondrial-DNA variation in collared peccaries. J Mammal 75:121–128

    Article  Google Scholar 

  • Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    Article  PubMed  CAS  Google Scholar 

  • Trivers RL (1971) The evolution of reciprocal altruism. Q Rev Biol 46:35–57

    Article  Google Scholar 

  • Van Horn RC, Altmann J, Alberts SC (2008) Can't get there from here: inferring kinship from pairwise genetic relatedness. Anim Behav 75:1173–1180

    Article  Google Scholar 

  • Vanpe C, Kjellander P, Galan M, Cosson JF, Aulagnier S, Liberg O, Hewison AJM (2008) Mating system, sexual dimorphism, and the opportunity for sexual selection in a territorial ungulate. Behav Ecol 19:309–316

    Article  Google Scholar 

  • Williams RN, DeWoody JA (2004) Fluorescent dUTP helps characterize 10 novel tetranucleotide microsatellites from an enriched salamander (Ambystoma texanum) genomic library. Mol Ecol Notes 4:17–19

    Article  CAS  Google Scholar 

  • Wolff JO, Macdonald DW (2004) Promiscuous females protect their offspring. Trends Ecol Evol 19:127–134

    Article  PubMed  Google Scholar 

  • Wright DB (1993) Evolution of sexually dimorphic characters in peccaries (Mammalia, Tayassuidae). Paleobiology 19:52–70

    Google Scholar 

Download references

Funding

This work was supported by the American Society of Mammalogists (Grant in Aid of Research to J.D. C.), by the Welder Wildlife Refuge (Graduate Fellowship to J.D.C), and by Purdue University (funding to J.A.D.). J.D. Cooper is a Welder Wildlife Refuge Fellow, and she sincerely thanks the wonderful faculty and staff at the Welder for their encouragement and support. Much appreciation goes to Jim Cathey and to Texas Parks and Wildlife Department personnel at Big Bend Ranch State Park and Chaparral Wildlife Management Area for their advice and assistance during field data collection. We offer special thanks to volunteers Edmund Harriss, Rachel Bonner, and Raul Martinez for their dedication and hard work in trapping. The work described here complies with the laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer D. Cooper.

Additional information

Communicated by A. Schulte-Hostedde

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, J.D., Waser, P.M., Hellgren, E.C. et al. Is sexual monomorphism a predictor of polygynandry? Evidence from a social mammal, the collared peccary. Behav Ecol Sociobiol 65, 775–785 (2011). https://doi.org/10.1007/s00265-010-1081-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-010-1081-2

Keywords

Navigation