Skip to main content

Advertisement

Log in

Recombinant IgE antibody engineering to target EGFR

  • Symposium-in-writing paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Monoclonal antibodies have become a mainstay for the targeted treatment of cancer today. Some of the most successful targets of monoclonal antibodies are constituted by the epidermal growth factor receptor family spearheaded by the epidermal growth factor receptor (EGFR). Prompted by studies indicating that IgE compared to IgG may harness alternate effector functions to eradicate malignant cells, we addressed the establishment, engineering, and the potential tumoricidal effects of recombinant anti-EGFR IgE. Therefore, two different therapeutic EGFR-specific antibodies, 225 and 425, were chosen for re-cloning into different chimeric IgE and IgG formats and produced in human cells. Simultaneous antibody binding to the sEGFR demonstrated accessibility of both epitopes for recombinant IgE. Proliferation and cytotoxicity assays demonstrated signal blocking and effector mediating capability of IgE isotypes. Pronounced degranulation in the presence of sEGFR upon activation exclusively with two IgE antibodies verified the epitope proximity and provides evidence that tumor-targeting by anti-EGFR IgE is safe with regard to soluble target structures. Degranulation mediated by tumor cells expressing EGFR could be demonstrated for singular and combined IgE antibodies; however, use of two IgE specificities was not superior to use of one IgE alone. The data suggest that the surface distribution of EGFR is optimally suited to mount a robust effector cell trigger and corroborate the potential and specificity of the IgE/IgE receptor network to react to xenobiotic or pathogenic patterns for targeting malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527

    Article  PubMed  CAS  Google Scholar 

  2. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425

    Article  PubMed  CAS  Google Scholar 

  3. Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505–516

    Article  PubMed  CAS  Google Scholar 

  4. Gadella TW Jr, Jovin TM (1995) Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol 129:1543–1558

    Article  PubMed  CAS  Google Scholar 

  5. Lemmon MA, Bu Z, Ladbury JE, Zhou M, Pinchasi D, Lax I, Engelman DM, Schlessinger J (1997) Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J 16:281–294

    Article  PubMed  CAS  Google Scholar 

  6. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E, Waterman H, Sela M, van Zoelen EJ, Yarden Y (1998) Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J 17:3385–3397

    Article  PubMed  CAS  Google Scholar 

  7. Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G (1996) All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 271:5251–5257

    Article  PubMed  CAS  Google Scholar 

  8. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040

    Article  PubMed  CAS  Google Scholar 

  9. Hommelgaard AM, Lerdrup M, van Deurs B (2004) Association with membrane protrusions makes ErbB2 an internalization-resistant receptor. Mol Biol Cell 15:1557–1567

    Article  PubMed  CAS  Google Scholar 

  10. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12:104–117

    Article  PubMed  CAS  Google Scholar 

  11. Sato K, Sato A, Aoto M, Fukami Y (1995) Site-specific association of c-Src with epidermal growth factor receptor in A431 cells. Biochem Biophys Res Commun 210:844–851

    Article  PubMed  CAS  Google Scholar 

  12. Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ (1999) c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274:8335–8343

    Article  PubMed  CAS  Google Scholar 

  13. Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE (1999) ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem 274:17209–17218

    Article  PubMed  CAS  Google Scholar 

  14. Wilde A, Beattie EC, Lem L, Riethof DA, Liu SH, Mobley WC, Soriano P, Brodsky FM (1999) EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96:677–687

    Article  PubMed  CAS  Google Scholar 

  15. Hynes NE (2000) Tyrosine kinase signalling in breast cancer. Breast Cancer Res 2:154–157

    Article  PubMed  CAS  Google Scholar 

  16. Ford AC, Grandis JR (2003) Targeting epidermal growth factor receptor in head and neck cancer. Head Neck 25:67–73

    Article  PubMed  Google Scholar 

  17. Wheeler DL, Dunn EF, Harari PM (2010) Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 7:493–507

    Article  PubMed  CAS  Google Scholar 

  18. Buerger C, Nagel-Wolfrum K, Kunz C, Wittig I, Butz K, Hoppe-Seyler F, Groner B (2003) Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J Biol Chem 278:37610–37621

    Article  PubMed  CAS  Google Scholar 

  19. Li N, Nguyen HH, Byrom M, Ellington AD (2011) Inhibition of cell proliferation by an Anti-EGFR aptamer. PLoS ONE 6:e20299

    Article  PubMed  CAS  Google Scholar 

  20. Yamazaki H, Kijima H, Ohnishi Y, Abe Y, Oshika Y, Tsuchida T, Tokunaga T, Tsugu A, Ueyama Y, Tamaoki N, Nakamura M (1998) Inhibition of tumor growth by ribozyme-mediated suppression of aberrant epidermal growth factor receptor gene expression. J Natl Cancer Inst 90:581–587

    Article  PubMed  CAS  Google Scholar 

  21. Riemer AB, Kurz H, Klinger M, Scheiner O, Zielinski CC, Jensen-Jarolim E (2005) Vaccination with cetuximab mimotopes and biological properties of induced anti-epidermal growth factor receptor antibodies. J Natl Cancer Inst 97:1663–1670

    Article  PubMed  CAS  Google Scholar 

  22. Yang L, Jiang H, Shi B, Wang H, Li J, Yao M, Li Z (2010) Identification and characterization of Ch806 mimotopes. Cancer Immunol Immunother 59:1481–1487

    Article  PubMed  CAS  Google Scholar 

  23. Hartmann C, Muller N, Blaukat A, Koch J, Benhar I, Wels WS (2010) Peptide mimotopes recognized by antibodies cetuximab and matuzumab induce a functionally equivalent anti-EGFR immune response. Oncogene 29:4517–4527

    Article  PubMed  CAS  Google Scholar 

  24. Mendelsohn J (1997) Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 3:2703–2707

    PubMed  CAS  Google Scholar 

  25. Masui H, Kawamoto T, Sato JD, Wolf B, Sato G, Mendelsohn J (1984) Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 44:1002–1007

    PubMed  CAS  Google Scholar 

  26. Beum PV, Mack DA, Pawluczkowycz AW, Lindorfer MA, Taylor RP (2008) Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes. J Immunol 181:8120–8132

    PubMed  CAS  Google Scholar 

  27. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358:1109–1117

    Article  PubMed  CAS  Google Scholar 

  28. Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG (2001) Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 38:17–23

    Article  PubMed  CAS  Google Scholar 

  29. de Bono JS, Rowinsky EK (2002) Therapeutics targeting signal transduction for patients with colorectal carcinoma. Br Med Bull 64:227–254

    Article  PubMed  Google Scholar 

  30. Harding J, Burtness B (2005) Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41:107–127

    Article  CAS  Google Scholar 

  31. Bleeker WK, Lammerts van Bueren JJ, van Ojik HH, Gerritsen AF, Pluyter M, Houtkamp M, Halk E, Goldstein J, Schuurman J, van Dijk MA, van de Winkel JG, Parren PW (2004) Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol 173:4699–4707

    PubMed  CAS  Google Scholar 

  32. Murthy U, Basu A, Rodeck U, Herlyn M, Ross AH, Das M (1987) Binding of an antagonistic monoclonal antibody to an intact and fragmented EGF-receptor polypeptide. Arch Biochem Biophys 252:549–560

    Article  PubMed  CAS  Google Scholar 

  33. Rodeck U, Williams N, Murthy U, Herlyn M (1990) Monoclonal antibody 425 inhibits growth stimulation of carcinoma cells by exogenous EGF and tumor-derived EGF/TGF-alpha. J Cell Biochem 44:69–79

    Article  PubMed  CAS  Google Scholar 

  34. Seiden MV, Burris HA, Matulonis U, Hall JB, Armstrong DK, Speyer J, Weber JD, Muggia F (2007) A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol 104:727–731

    Article  PubMed  CAS  Google Scholar 

  35. Schiller JH (2008) Developments in epidermal growth factor receptor-targeting therapy for solid tumors: focus on matuzumab (EMD 72000). Cancer Invest 26:81–95

    Article  PubMed  CAS  Google Scholar 

  36. Mateo C, Moreno E, Amour K, Lombardero J, Harris W, Perez R (1997) Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology 3:71–81

    Article  PubMed  CAS  Google Scholar 

  37. Suarez Pestana E, Greiser U, Sanchez B, Fernandez LE, Lage A, Perez R, Bohmer FD (1997) Growth inhibition of human lung adenocarcinoma cells by antibodies against epidermal growth factor receptor and by ganglioside GM3: involvement of receptor-directed protein tyrosine phosphatase(s). Br J Cancer 75:213–220

    Article  PubMed  CAS  Google Scholar 

  38. Luwor RB, Johns TG, Murone C, Huang HJ, Cavenee WK, Ritter G, Old LJ, Burgess AW, Scott AM (2001) Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res 61:5355–5361

    PubMed  CAS  Google Scholar 

  39. Schmiedel J, Blaukat A, Li S, Knochel T, Ferguson KM (2008) Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 13:365–373

    Article  PubMed  CAS  Google Scholar 

  40. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446

    Article  PubMed  CAS  Google Scholar 

  41. Pander J, Heusinkveld M, Van der Straaten T, Jordanova ES, Baak-Pablo R, Gelderblom H, Morreau H, van der Burg SH, Guchelaar HJ, van Hall T (2011) Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab. Clin Cancer Res 17:5668–5673

    Article  PubMed  CAS  Google Scholar 

  42. Neuberger MS (1983) Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. EMBO J 2:1373–1378

    PubMed  CAS  Google Scholar 

  43. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855

    Article  PubMed  CAS  Google Scholar 

  44. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  PubMed  CAS  Google Scholar 

  45. Gritzmacher CA, Liu FT (1987) Expression of a recombinant murine IgE in transfected myeloma cells. J Immunol 138:324–329

    PubMed  CAS  Google Scholar 

  46. Furtado PB, McElveen JE, Gough L, Armour KL, Clark MR, Sewell HF, Shakib F (2002) The production and characterisation of a chimaeric human IgE antibody, recognising the major mite allergen Der p 1, and its chimaeric human IgG1 anti-idiotype. Mol Pathol 55:315–324

    Article  PubMed  CAS  Google Scholar 

  47. Rodin DV, Kolesnikov VA, Srdiuk OV, Zelenina IA, Zelenin AV, Deev SM (2000) Synthesis of chimeric IgE in vivo after ballistic transfection of immunoglobulin genes in various mouse tissues. Mol Biol (Mosk) 34:18–23

    CAS  Google Scholar 

  48. Boel E, Verlaan S, Poppelier MJ, Westerdaal NA, Van Strijp JA, Logtenberg T (2000) Functional human monoclonal antibodies of all isotypes constructed from phage display library-derived single-chain Fv antibody fragments. J Immunol Methods 239:153–166

    Article  PubMed  CAS  Google Scholar 

  49. Braren I, Blank S, Seismann H, Deckers S, Ollert M, Grunwald T, Spillner E (2007) Generation of human monoclonal allergen-specific IgE and IgG antibodies from synthetic antibody libraries. Clin Chem 53:837–844

    Article  PubMed  CAS  Google Scholar 

  50. Christensen LH, Riise E, Bang L, Zhang C, Lund K (2010) Isoallergen variations contribute to the overall complexity of effector cell degranulation: effect mediated through differentiated IgE affinity. J Immunol 184:4966–4972

    Article  PubMed  CAS  Google Scholar 

  51. Lundberg K, Lindstedt M, Larsson K, Dexlin L, Wingren C, Ohlin M, Greiff L, Borrebaeck CA (2008) Augmented Phl p 5-specific Th2 response after exposure of dendritic cells to allergen in complex with specific IgE compared to IgG1 and IgG4. Clin Immunol 128:358–365

    Article  PubMed  CAS  Google Scholar 

  52. Madritsch C, Flicker S, Scheiblhofer S, Zafred D, Pavkov-Keller T, Thalhamer J, Keller W, Valenta R (2011) Recombinant monoclonal human immunoglobulin E to investigate the allergenic activity of major grass pollen allergen Phl p 5. Clin Exp Allergy 41:270–280

    Article  PubMed  CAS  Google Scholar 

  53. Braren I, Greunke K, Umland O, Deckers S, Bredehorst R, Spillner E (2007) Comparative expression of different antibody formats in mammalian cells and Pichia pastoris. Biotechnol Appl Biochem 47:205–214

    Article  PubMed  CAS  Google Scholar 

  54. McDonnell JM, Calvert R, Beavil RL, Beavil AJ, Henry AJ, Sutton BJ, Gould HJ, Cowburn D (2001) The structure of the IgE Cepsilon2 domain and its role in stabilizing the complex with its high-affinity receptor FcepsilonRIalpha. Nat Struct Biol 8:437–441

    Article  PubMed  CAS  Google Scholar 

  55. Gunther N, Betzel C, Weber W (1990) The secreted form of the epidermal growth factor receptor. Characterization and crystallization of the receptor-ligand complex. J Biol Chem 265:22082–22085

    PubMed  CAS  Google Scholar 

  56. Dechant M, Weisner W, Berger S, Peipp M, Beyer T, Schneider-Merck T, Lammerts van Bueren JJ, Bleeker WK, Parren PW, van de Winkel JG, Valerius T (2008) Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res 68:4998–5003

    Article  PubMed  CAS  Google Scholar 

  57. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311

    Article  PubMed  CAS  Google Scholar 

  58. Freeman DSJ, Bass R, Jung K, Ogbagabriel S, Elliott G, Radinsky R (2008) Panitumumab and cetuximab epitope mapping and in vitro activity [abstract]. J Clin Oncol 26:14536

    Google Scholar 

  59. Talavera A, Friemann R, Gomez-Puerta S, Martinez-Fleites C, Garrido G, Rabasa A, Lopez-Requena A, Pupo A, Johansen RF, Sanchez O, Krengel U, Moreno E (2009) Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res 69:5851–5859

    Article  PubMed  CAS  Google Scholar 

  60. Braren I, Greunke K, Pilette C, Mempel M, Grunwald T, Bredehorst R, Ring J, Spillner E, Ollert M (2011) Quantitation of serum IgE by using chimeras of human IgE receptor and avian immunoglobulin domains. Anal Biochem 412:134–140

    Article  PubMed  CAS  Google Scholar 

  61. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  PubMed  CAS  Google Scholar 

  62. Karagiannis P, Singer J, Hunt J, Gan SK, Rudman SM, Mechtcheriakova D, Knittelfelder R, Daniels TR, Hobson PS, Beavil AJ, Spicer J, Nestle FO, Penichet ML, Gould HJ, Jensen-Jarolim E, Karagiannis SN (2009) Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells. Cancer Immunol Immunother 58:915–930

    Article  PubMed  CAS  Google Scholar 

  63. Bracher M, Gould HJ, Sutton BJ, Dombrowicz D, Karagiannis SN (2007) Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods 323:160–171

    Article  PubMed  CAS  Google Scholar 

  64. Jensen-Jarolim E, Mechtcheriakova D, Pali-Schoell I (2010) The targets of IgE: allergen-associated and tumor-associated molecular patterns. In: Penichet ML, Jensen-Jarolim E (eds) Cancer and IgE: introducing the concept of AllergoOncology. Humana Press, New York, pp 231–254

    Google Scholar 

  65. Rudman SM, Josephs DH, Cambrook H, Karagiannis P, Gilbert AE, Dodev T, Hunt J, Koers A, Montes A, Taams L, Canevari S, Figini M, Blower PJ, Beavil AJ, Nicodemus CF, Corrigan C, Kaye SB, Nestle FO, Gould HJ, Spicer JF, Karagiannis SN (2011) Harnessing engineered antibodies of the IgE class to combat malignancy: initial assessment of FcvarepsilonRI-mediated basophil activation by a tumour-specific IgE antibody to evaluate the risk of type I hypersensitivity. Clin Exp Allergy 41:1400–1413

    Article  PubMed  CAS  Google Scholar 

  66. Gould HJ, Mackay GA, Karagiannis SN, O’Toole CM, Marsh PJ, Daniel BE, Coney LR, Zurawski VR Jr, Joseph M, Capron M, Gilbert M, Murphy GF, Korngold R (1999) Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29:3527–3537

    Article  PubMed  CAS  Google Scholar 

  67. Riemer AB, Untersmayr E, Knittelfelder R, Duschl A, Pehamberger H, Zielinski CC, Scheiner O, Jensen-Jarolim E (2007) Active induction of tumor-specific IgE antibodies by oral mimotope vaccination. Cancer Res 67:3406–3411

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Kerstin Greunke for helpful discussions and critical reading of the manuscript. JS was supported by Austrian Science Fund projects P 23398-B11 and W1205-B09 (doctoral college CCHD).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edzard Spillner.

Additional information

This paper is part of the Symposium in Writing: AllergoOncology, the role of Th2 responses in cancer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spillner, E., Plum, M., Blank, S. et al. Recombinant IgE antibody engineering to target EGFR. Cancer Immunol Immunother 61, 1565–1573 (2012). https://doi.org/10.1007/s00262-012-1287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1287-4

Keywords

Navigation