Skip to main content
Log in

Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen: implications for immunotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Effective vaccination against tumour-associated antigens (TAA) such as the 5T4 oncofoetal glycoprotein may be limited by the nature of the T cell repertoire and the influence of immunomodulatory factors in particular T regulatory cells (Treg). Here, we identified mouse 5T4-specific T cell epitopes using a 5T4 knock out (5T4KO) mouse and evaluated corresponding wild-type (WT) responses as a model to refine and improve immunogenicity. We have shown that 5T4KO mice vaccinated by replication defective adenovirus encoding mouse 5T4 (Adm5T4) generate potent 5T4-specific IFN-γ CD8 and CD4 T cell responses which mediate significant protection against 5T4 positive tumour challenge. 5T4KO CD8 but not CD4 primed T cells also produced IL-17. By contrast, Adm5T4-immunized WT mice showed no tumour protection consistent with only low avidity CD8 IFN-γ, no IL-17 T cell responses and no detectable CD4 T cell effectors producing IFN-γ or IL-17. Treatment with anti-folate receptor 4 (FR4) antibody significantly reduced the frequency of Tregs in WT mice and enhanced 5T4-specific IFN-γ but reduced IL-10 T cell responses but did not reveal IL-17-producing effectors. This altered balance of effectors by treatment with FR4 antibody after Adm5T4 vaccination provided modest protection against autologous B16m5T4 melanoma challenge. The efficacy of 5T4 and some other TAA vaccines may be limited by the combination of TAA-specific T regs, the deletion and/or alternative differentiation of CD4 T cells as well as the absence of distinct subsets of CD8 T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FR4:

Folate Receptor 4

TAA:

Tumour-associated antigens

Treg:

T regulatory cell

mAb:

Monoclonal antibody

IL:

Interleukin

TCR:

T cell Receptor

sc:

Subcutaneous

im:

Intramuscular

iv:

Intravenous

CTLA-4:

CTL-associated antigen-4

GITR:

Glucocorticoid-induced TNF receptor

MLR:

Mixed leucocyte reaction

Tc17:

IL-17-producing CD8 T cell

CEA:

Carcinoembryonic antigen

IDO:

Indoleamine 2, 3-dioxygenase

CDR:

Complementary determining region

References

  1. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915. doi:10.1038/nm1100

    Article  PubMed  CAS  Google Scholar 

  2. Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117. doi:10.1146/annurev.immunol.021908.132544

    Article  PubMed  CAS  Google Scholar 

  3. Hole N, Stern PL (1988) A 72 kD trophoblast glycoprotein defined by a monoclonal antibody. Br J Cancer 57(3):239–246

    Article  PubMed  CAS  Google Scholar 

  4. Hole N, Stern PL (1990) Isolation and characterization of 5T4, a tumour-associated antigen. Int J Cancer 45(1):179–184

    Article  PubMed  CAS  Google Scholar 

  5. Southall PJ, Boxer GM, Bagshawe KD, Hole N, Bromley M, Stern PL (1990) Immunohistological distribution of 5T4 antigen in normal and malignant tissues. Br J Cancer 61(1):89–95

    Article  PubMed  CAS  Google Scholar 

  6. Naganuma H, Kono K, Mori Y, Takayoshi S, Stern PL, Tasaka K, Matsumoto Y (2002) Oncofetal antigen 5T4 expression as a prognostic factor in patients with gastric cancer. Anticancer Res 22(2B):1033–1038

    PubMed  CAS  Google Scholar 

  7. Starzynska T, Marsh PJ, Schofield PF, Roberts SA, Myers KA, Stern PL (1994) Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer 69(5):899–902

    Article  PubMed  CAS  Google Scholar 

  8. Wrigley E, McGown AT, Rennison J, Swindell R, Crowther D, Starzynska T, Stern PL (1995) 5T4 oncofetal antigen expression in ovarian carcinoma. Int J Gynecol Cancer 5(4):269–274. doi:05040269

    Article  PubMed  Google Scholar 

  9. Awan A, Lucic MR, Shaw DM, Sheppard F, Westwater C, Lyons SA, Stern PL (2002) 5T4 interacts with TIP-2/GIPC, a PDZ protein, with implications for metastasis. Biochem Biophys Res Commun 290(3):1030–1036. doi:10.1006/bbrc.2001.6288

    Article  PubMed  CAS  Google Scholar 

  10. Carsberg CJ, Myers KA, Stern PL (1996) Metastasis-associated 5T4 antigen disrupts cell–cell contacts and induces cellular motility in epithelial cells. Int J Cancer 68(1):84–92. doi:10.1002/(SICI)1097-0215(19960927)68:1<84:AID-IJC15>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  11. Southgate TD, McGinn OJ, Castro FV, Rutkowski AJ, Al-Muftah M, Marinov G, Smethurst GJ, Shaw D, Ward CM, Miller CJ, Stern PL (2010) CXCR4 mediated chemotaxis is regulated by 5T4 oncofetal glycoprotein in mouse embryonic cells. PLoS One 5(4):9982. doi:10.1371/journal.pone.0009982

    Article  Google Scholar 

  12. Shaw DM, Connolly NB, Patel PM, Kilany S, Hedlund G, Nordle O, Forsberg G, Zweit J, Stern PL, Hawkins RE (2007) A phase II study of a 5T4 oncofoetal antigen tumour-targeted superantigen (ABR-214936) therapy in patients with advanced renal cell carcinoma. Br J Cancer 96(4):567–574. doi:10.1038/sj.bjc.6603567

    Article  PubMed  CAS  Google Scholar 

  13. Boghaert ER, Sridharan L, Khandke KM, Armellino D, Ryan MG, Myers K, Harrop R, Kunz A, Hamann PR, Marquette K, Dougher M, DiJoseph JF, Damle NK (2008) The oncofetal protein, 5T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin. Int J Oncol 32(1):221–234

    PubMed  CAS  Google Scholar 

  14. Griffiths RW, Gilham DE, Dangoor A, Ramani V, Clarke NW, Stern PL, Hawkins RE (2005) Expression of the 5T4 oncofoetal antigen in renal cell carcinoma: a potential target for T-cell-based immunotherapy. Br J Cancer 93(6):670–677. doi:10.1038/sj.bjc.6602776

    Article  PubMed  CAS  Google Scholar 

  15. Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’Neill A, Irlam J, Chester KA, Kemshead JT, Shaw DM, Embleton MJ, Stern PL, Gilham DE (2005) The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother 28(3):203–211. doi:00002371-200505000-00005

    Article  PubMed  CAS  Google Scholar 

  16. Harrop R, Shingler W, Kelleher M, de Belin J, Treasure P (2010) Cross-trial analysis of immunologic and clinical data resulting from phase I and II trials of MVA-5T4 (TroVax) in colorectal, renal, and prostate cancer patients. J Immunother 33(9):999–1005. doi:10.1097/CJI.0b013e3181f5dac7

    Article  PubMed  CAS  Google Scholar 

  17. Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P, Szczylik C, McDonald M, Eastty S, Shingler WH, de Belin J, Goonewardena M, Naylor S, Harrop R (2010) Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 16(22):5539–5547. doi:10.1158/1078-0432.CCR-10-2082

    Article  PubMed  CAS  Google Scholar 

  18. Harrop R, Shingler WH, McDonald M, Treasure P, Amato RJ, Hawkins RE, Kaufman HL, de Belin J, Kelleher M, Goonewardena M, Naylor S (2011) MVA-5T4-induced immune responses are an early marker of efficacy in renal cancer patients. Cancer Immunol Immunother 60(6):829–837. doi:10.1007/s00262-011-0993-7

    Article  PubMed  CAS  Google Scholar 

  19. Mulryan K, Ryan MG, Myers KA, Shaw D, Wang W, Kingsman SM, Stern PL, Carroll MW (2002) Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors. Mol Cancer Ther 1(12):1129–1137

    PubMed  CAS  Google Scholar 

  20. Greiner JW, Zeytin H, Anver MR, Schlom J (2002) Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Res 62(23):6944–6951

    PubMed  CAS  Google Scholar 

  21. Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J (2003) Vaccine therapy of established tumors in the absence of autoimmunity. Clin Cancer Res 9(5):1837–1849

    PubMed  CAS  Google Scholar 

  22. Kmieciak M, Morales JK, Morales J, Bolesta E, Grimes M, Manjili MH (2008) Danger signals and nonself entity of tumor antigen are both required for eliciting effective immune responses against HER-2/neu positive mammary carcinoma: implications for vaccine design. Cancer Immunol Immunother 57(9):1391–1398. doi:10.1007/s00262-008-0475-8

    Article  PubMed  CAS  Google Scholar 

  23. Song GY, Gibson G, Haq W, Huang EC, Srivasta T, Hollstein M, Daftarian P, Wang Z, Diamond D, Ellenhorn JD (2007) An MVA vaccine overcomes tolerance to human p53 in mice and humans. Cancer Immunol Immunother 56(8):1193–1205. doi:10.1007/s00262-006-0270-3

    Article  PubMed  CAS  Google Scholar 

  24. Ishizaki H, Manuel ER, Song GY, Srivastava T, Sun S, Diamond DJ, Ellenhorn JD (2011) Modified vaccinia Ankara expressing survivin combined with gemcitabine generates specific antitumor effects in a murine pancreatic carcinoma model. Cancer Immunol Immunother 60(1):99–109. doi:10.1007/s00262-010-0923-0

    Article  PubMed  CAS  Google Scholar 

  25. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580. doi:10.1084/jem.20030590

    Article  PubMed  CAS  Google Scholar 

  26. Saha A, Chatterjee SK, Foon KA, Celis E, Bhattacharya-Chatterjee M (2007) Therapy of established tumors in a novel murine model transgenic for human carcinoembryonic antigen and HLA-A2 with a combination of anti-idiotype vaccine and CTL peptides of carcinoembryonic antigen. Cancer Res 67(6):2881–2892. doi:10.1158/0008-5472.CAN-06-3045

    Article  PubMed  CAS  Google Scholar 

  27. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40(7):1830–1835

    Article  PubMed  CAS  Google Scholar 

  28. Teng MW, Swann JB, von Scheidt B, Sharkey J, Zerafa N, McLaughlin N, Yamaguchi T, Sakaguchi S, Darcy PK, Smyth MJ (2010) Multiple antitumor mechanisms downstream of prophylactic regulatory T-cell depletion. Cancer Res 70(7):2665–2674

    Article  PubMed  CAS  Google Scholar 

  29. Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T, Nomura T, Sakaguchi S (2007) Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27(1):145–159

    Article  PubMed  CAS  Google Scholar 

  30. Spencer HL, Eastham AM, Merry CL, Southgate TD, Perez-Campo F, Soncin F, Ritson S, Kemler R, Stern PL, Ward CM (2007) E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Mol Biol Cell 18(8):2838–2851

    Article  PubMed  CAS  Google Scholar 

  31. Woods AM, Wang WW, Shaw DM, Ward CM, Carroll MW, Rees BR, Stern PL (2002) Characterization of the murine 5T4 oncofoetal antigen: a target for immunotherapy in cancer. Biochem J 366(Pt 1):353–365. doi:10.1042/BJ20020104

    PubMed  CAS  Google Scholar 

  32. Ali S, Mulryan K, Taher T, Stern PL (2007) Immunotherapy success in prophylaxis cannot predict therapy: prime-boost vaccination against the 5T4 oncofoetal antigen. Cancer Immunol Immunother 56(2):165–180. doi:10.1007/s00262-006-0179-x

    Article  PubMed  CAS  Google Scholar 

  33. Barrow KM, Ward CM, Rutter J, Ali S, Stern PL (2005) Embryonic expression of murine 5T4 oncofoetal antigen is associated with morphogenetic events at implantation and in developing epithelia. Dev Dyn 233(4):1535–1545

    Article  PubMed  CAS  Google Scholar 

  34. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K, Gattinoni L, Wrzesinski C, Hinrichs CS, Kerstann KW, Feigenbaum L, Chan CC, Restifo NP (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112(2):362–373. doi:10.1182/blood-2007-11-120998

    Article  PubMed  CAS  Google Scholar 

  35. Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC, Carroll MW, Moss B, Rosenberg SA, Restifo NP (1999) Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci U S A 96(6):2982–2987

    Article  PubMed  CAS  Google Scholar 

  36. Brandmaier AG, Leitner WW, Ha SP, Sidney J, Restifo NP, Touloukian CE (2009) High-avidity autoreactive CD4+ T cells induce host CTL, overcome T(regs) and mediate tumor destruction. J Immunother 32(7):677–688. doi:10.1097/CJI.0b013e3181ab1824

    Article  PubMed  Google Scholar 

  37. Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127(4):759–767

    PubMed  CAS  Google Scholar 

  38. Simons DM, Picca CC, Oh S, Perng OA, Aitken M, Erikson J, Caton AJ (2010) How specificity for self-peptides shapes the development and function of regulatory T cells. J Leukoc Biol 88(6):1099–1107

    Article  PubMed  CAS  Google Scholar 

  39. Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174(5):2591–2601. doi:174/5/2591

    PubMed  CAS  Google Scholar 

  40. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358(25):2698–2703. doi:10.1056/NEJMoa0800251

    Article  PubMed  CAS  Google Scholar 

  41. Kennedy R, Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222:129–144. doi:10.1111/j.1600-065X.2008.00616.x

    Article  PubMed  CAS  Google Scholar 

  42. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA (2010) T Cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626

    Article  PubMed  Google Scholar 

  43. Bos R, van Duikeren S, Morreau H, Franken K, Schumacher TN, Haanen JB, van der Burg SH, Melief CJ, Offringa R (2008) Balancing between antitumor efficacy and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic antigen. Cancer Res 68(20):8446–8455

    Article  PubMed  CAS  Google Scholar 

  44. Sharma MD, Hou DY, Baban B, Koni PA, He Y, Chandler PR, Blazar BR, Mellor AL, Munn DH (2010) Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity 33(6):942–954

    Article  PubMed  CAS  Google Scholar 

  45. Pudney VA, Metheringham RL, Gunn B, Spendlove I, Ramage JM, Durrant LG (2010) DNA vaccination with T-cell epitopes encoded within Ab molecules induces high-avidity anti-tumor CD8+ T cells. Eur J Immunol 40(3):899–910. doi:10.1002/eji.200939857

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Hernandez Mde L, Hamada H, Reome JB, Misra SK, Tighe MP, Dutton RW (2010) Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J Immunol 184(8):4215–4227. doi:10.4049/jimmunol.0902995

    Article  PubMed  Google Scholar 

  47. Kondo T, Takata H, Matsuki F, Takiguchi M (2009) Cutting edge: phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J Immunol 182(4):1794–1798. doi:10.4049/jimmunol.0801347

    Article  PubMed  CAS  Google Scholar 

  48. Yen HR, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, Liang KL, Bruno TC, Pyle KJ, Chan SL, Anders RA, Trimble CL, Adler AJ, Lin TY, Pardoll DM, Huang CT, Drake CG (2009) Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol 183(11):7161–7168. doi:10.4049/jimmunol.0900368

    Article  PubMed  CAS  Google Scholar 

  49. Kuang DM, Peng C, Zhao Q, Wu Y, Zhu LY, Wang J, Yin XY, Li L, Zheng L (2010) Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol 185(3):1544–1549. doi:10.4049/jimmunol.0904094

    Article  PubMed  CAS  Google Scholar 

  50. Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, Meeker AK, Isaacs WB, Drake CG (2008) Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res 14(11):3254–3261. doi:10.1158/1078-0432.CCR-07-5164

    Article  PubMed  CAS  Google Scholar 

  51. Thistlethwaite FC, Elkord E, Griffiths RW, Burt DJ, Shablak AM, Campbell JD, Gilham DE, Austin EB, Stern PL, Hawkins RE (2008) Adoptive transfer of T(reg) depleted autologous T cells in advanced renal cell carcinoma. Cancer Immunol Immunother 57(5):623–634. doi:10.1007/s00262-007-0400-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The PICR Biological Resource Unit, Histology and Flow cytometry Core Facilities. This work was funded by Cancer Research UK (http://www.cancerresearchuk.org) grant C480/12328. MAM was supported by The Supreme Education Council of Qatar, The University of Qatar. DEG was supported by the FP6 ATTACK and FP7 ATTRACT programmes.

Conflict of interest

PLS is a member of Scientific Advisory Board of Oxford BioMedica from whom he has received meeting sponsorship and milestone payments relating to TroVax development. Other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Stern.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, F.V., Al-Muftah, M., Mulryan, K. et al. Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen: implications for immunotherapy. Cancer Immunol Immunother 61, 1005–1018 (2012). https://doi.org/10.1007/s00262-011-1167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1167-3

Keywords

Navigation