Skip to main content

Advertisement

Log in

Brain metabolic correlates of dopaminergic degeneration in de novo idiopathic Parkinson’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to evaluate the reciprocal relationships between motor impairment, dopaminergic dysfunction, and cerebral metabolism (rCMRglc) in de novo Parkinson’s disease (PD) patients.

Methods

Twenty-six de novo untreated PD patients were scanned with 123I-FP-CIT SPECT and 18F-FDG PET. The dopaminergic impairment was measured with putaminal 123I-FP-CIT binding potential (BP), estimated with two different techniques: an iterative reconstruction algorithm (BPOSEM) and the least-squares (LS) method (BPLS). Statistical parametric mapping (SPM) multiple regression analyses were performed to determine the specific brain regions in which UPDRS III scores and putaminal BP values correlated with rCMRglc.

Results

The SPM results showed a negative correlation between UPDRS III and rCMRglc in premotor cortex, and a positive correlation between BPOSEM and rCMRglc in premotor and dorsolateral prefrontal cortex, not surviving at multiple comparison correction. Instead, there was a positive significant correlation between putaminal BPLS and rCMRglc in premotor, dorsolateral prefrontal, anterior prefrontal, and orbitofrontal cortex (p < 0.05, corrected for multiple comparison).

Conclusions

Putaminal BPLS is an efficient parameter for exploring the correlations between PD severity and rCMRglc cortical changes. The correlation between dopaminergic degeneration and rCMRglc in several prefrontal regions likely represents the cortical functional correlate of the dysfunction in the motor basal ganglia-cortical circuit in PD. This finding suggests focusing on the metabolic course of these areas to follow PD progression and to analyze treatment effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hughes A, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.

    Article  CAS  PubMed  Google Scholar 

  2. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114:2283–301.

    Article  PubMed  Google Scholar 

  3. Seibyl JP. Imaging studies in movement disorders. Semin Nucl Med. 2003;33:105–13.

    Article  PubMed  Google Scholar 

  4. Booij J, Speelman JD, Horstink MWIM, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med. 2001;28:266–72.

    Article  CAS  PubMed  Google Scholar 

  5. Spiegel J, Hellwig G, Samnick S, Jost W, Mollers MO, Fassbender K, et al. Striatal FP-CIT uptake differs in subtypes of early Parkinson’s disease. J Neural Transm. 2007;114:331–5.

    Article  CAS  PubMed  Google Scholar 

  6. Marshall V, Grosset D. Role of dopamine transporter imaging in routine clinical practice. Mov Disord. 2003;18:1415–23.

    Article  PubMed  Google Scholar 

  7. Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci. 2003;26:215–21.

    Article  CAS  PubMed  Google Scholar 

  8. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J Neurol. 2002;249(Suppl 3):III/1–5.

    PubMed  Google Scholar 

  9. Obeso JA, Rodriguez-Oroz MC, Lanciego JL, Rodriguez Diaz M. How does Parkinson’s disease begin? The role of compensatory mechanisms. Trends Neurosci. 2004;27:125–7.

    Article  CAS  PubMed  Google Scholar 

  10. Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. NeuroImage. 2005;26:912–21.

    Article  PubMed  Google Scholar 

  11. Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab. 1994;14:783–801.

    CAS  PubMed  Google Scholar 

  12. Fukuda M, Edwards C, Eidelberg D. Functional brain networks in Parkinson’s disease. Parkinsonism and Related Disorders. 2001;8:91–4.

    Article  CAS  PubMed  Google Scholar 

  13. Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130:1834–46.

    Article  PubMed  Google Scholar 

  14. Nagano-Saito A, Kato T, Arahata Y, Washimi Y, Nakamura A, Abe Y, et al. Cognitive- and motor-related regions in Parkinson’s disease: FDOPA and FDG PET studies. NeuroImage. 2004;22:553–61.

    Article  PubMed  Google Scholar 

  15. Tissingh G, Booij J, Bergmans P, Winogrodzka A, Janssen A, Van Royen E, et al. Iodine-123-N–fluoropropyl-2-ß-carbomethoxy-3ß-(4-iodophenyl)tropane SPECT in healthy controls and early stage, drug-naive Parkinson's disease. J Nucl Med. 1998;39:1143–8.

    CAS  PubMed  Google Scholar 

  16. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  CAS  PubMed  Google Scholar 

  17. Vanzi E, De Cristofaro MT, Ramat S, Sotgia B, Mascalchi M, Formiconi AR. A direct ROI quantification method for inherent PVE correction: accuracy assessment in striatal SPECT measurements. Eur J Nucl Med Mol Imaging. 2007;34:1480–9.

    Article  PubMed  Google Scholar 

  18. Berti V, Pupi A, Ramat S, Vanzi E, De Cristofaro MT, Pellicanò G, et al. Clinical correlation of the binding potential with 123I-FP-CIT in de novo idiopathic Parkinson’s disease patients. Eur J Nucl Med Mol Imaging. 2008;35:2220–6.

    Article  PubMed  Google Scholar 

  19. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson's disease. N Engl J Med. 2004;351:2498–508.

    Article  CAS  PubMed  Google Scholar 

  20. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17:427–42.

    CAS  PubMed  Google Scholar 

  21. Fahn S, Elton RL. and members of the UPDRS Development Committee. Unified Parkinson's disease rating scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M, editors. Recent development in Parkinson's disease. Florham Park: Macmillan Healthcare information; 1987. pp. 153–64.

    Google Scholar 

  22. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Transm Med Imaging. 1994;13:601–9.

    Article  CAS  Google Scholar 

  23. Chang L. A method for attenuation correction in computed tomography. IEEE TransNuclSci. 1987;25:638–64.

    Google Scholar 

  24. Arun KS, Huang TS, Blostein S. Least-squares of two 3d point sets. IEEE Trans Pattern Anal Mach Intell. 1987;9:698–700.

    Article  Google Scholar 

  25. Formiconi AR. Least squares algorithm for region of interest evaluation in emission tomography. IEEE Trans Med Imag. 1993;12:90–100.

    Article  CAS  Google Scholar 

  26. Formiconi AR, Passeri A, Calvini P. Theoretical determination of the collimator geometrical transfer function for the reconstruction of SPECT data. IEEE Trans Nucl Sci. 1999;46:1075–80.

    Article  Google Scholar 

  27. Isaias IU, Benti R, Cilia R, Canesi M, Marotta G, Gerundini P, et al. [123I]FP-CIT striatal binding in early Parkinson’s disease patients with tremor vs. akinetic-rigid onset. NeuroReport. 2007;18:1499–502.

    Article  PubMed  Google Scholar 

  28. Worsley K, Marrett S, Neelin P, Vanda A, Friston K, Evans A. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping. 1996;4:58–73.

    Article  CAS  PubMed  Google Scholar 

  29. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  30. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13:266–71.

    Article  CAS  PubMed  Google Scholar 

  31. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.

    Google Scholar 

  32. Hirano S, Asanuma K, Ma Y, Tang C, Feigin A, Dhawan V, et al. Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease. J Neurosci. 2008;28:4201–9.

    Article  CAS  PubMed  Google Scholar 

  33. Eshuis SA, Maguire RP, Leenders KL, Jonkman S, Jager PL. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2006;33:200–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kaasinen V, Maguire RP, Hundemer HP, Leenders KL. Corticostriatal covariance patterns of 6-[18F]fluoro-L-dopa and [18F]fluorodeoxyglucose PET in Parkinson’s disease. J Neurol. 2006;253:340–8.

    Article  CAS  PubMed  Google Scholar 

  35. Benamer HTS, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000;15:692–8.

    Article  CAS  PubMed  Google Scholar 

  36. Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry. 2002;159:738–45.

    Article  PubMed  Google Scholar 

  37. Albin R, Young AB, Penny JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.

    Article  CAS  PubMed  Google Scholar 

  38. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzao N, et al. Pathophysiology of the basal ganglia in Parkinson’s disease. Trens Neurosci. 2000;2:S8–19.

    Article  Google Scholar 

  39. Leh SE, Ptito A, Chakravarty MM, Strafella AP. Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Neurosci Lett. 2007;419:113–8.

    Article  CAS  PubMed  Google Scholar 

  40. Obeso JA, Marin C, Rodriguez-Oroz C, Blesa J, Benitez-Temino B, Mena-Segovia J, et al. The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol. 2008;64:S30–46.

    Article  PubMed  Google Scholar 

  41. Lozza C, Marié RM, Baron JC. The metabolic substrates of bradykinesia and tremor in uncomplicated Parkinson’s disease. Neuroimage. 2002;17:688–99.

    Article  CAS  PubMed  Google Scholar 

  42. Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol. 2007;6:926–32.

    Article  PubMed  Google Scholar 

  43. Carbon M, Eidelberg D. Modulation of regional brain function by deep brain stimulation: studies with positron emission tomography. Curr Opin Neurol. 2002;15:451–5.

    Article  PubMed  Google Scholar 

  44. Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marié RM. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp. 2004;22:236–45.

    Article  PubMed  Google Scholar 

  45. Moeller JR, Habeck CG. Reciprocal benefits of mass-univariate and multivariate modeling in brain mapping: applications to event-related functional MRI, H 152 O-, and FDG-PET. Int J Biomed Imag 2006;1–13.

  46. Brownell AL, Canales K, Chen YI, Jenkins BG, Owen C, Livni E, et al. Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson's disease model. Neuroimage. 2003;20(2):1064–75.

    Article  PubMed  Google Scholar 

  47. Meissner W, Guigoni C, Cirilli L, Garret M, Bioulac BH, Gross CE, et al. Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: a 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson's disease. Eur J Neurosci. 2007;25(5):1492–500.

    Article  PubMed  Google Scholar 

  48. Utter AA, Basso MA. The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev. 2008;32(3):333–42.

    Article  PubMed  Google Scholar 

  49. Braak H, Rub U, Schultz C, Del Tredici K. Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s disease. J Alzheimers Dis. 2006;9:35–44.

    CAS  PubMed  Google Scholar 

  50. Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Berti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berti, V., Polito, C., Ramat, S. et al. Brain metabolic correlates of dopaminergic degeneration in de novo idiopathic Parkinson’s disease. Eur J Nucl Med Mol Imaging 37, 537–544 (2010). https://doi.org/10.1007/s00259-009-1259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1259-x

Keywords

Navigation