Skip to main content

Advertisement

Log in

68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

αvβ3 integrins are important cell adhesion receptors involved in angiogenic processes. Recently, we demonstrated using [18F]Galacto-RGD that monitoring of αvβ3 expression is feasible. Here, we introduce 68Ga- and 111In-labelled derivatives and compare them with [18F]Galacto-RGD.

Methods

For radiolabelling, cyclo(RGDfK(DOTA)) was synthesised using SPPS. For in vitro characterisation determination of partition coefficients, protein binding, metabolic stability, αvβ3 affinity and cell uptake and for in vivo characterization, biodistribution studies and micro positron emission tomography (PET) imaging were carried out. For in vivo and in vitro studies, human melanoma M21 (αvβ3 positive) and M21-L (αvβ3 negative) cells were used.

Results

Both tracers can be synthesised straightforward. The compounds showed hydrophilic properties and high metabolic stability. Up to 23% protein-bound activity for [68Ga]DOTA-RGD and only up to 1.4% for [111In]DOTA-RGD was found. Cell uptake studies indicate receptor-specific accumulation. This is confirmed by the biodistribution data. One hour p.i. accumulation in αvβ3-positive tumours was 2.9 ± 0.3%ID/g and in αvβ3-negative tumours 0.8 ± 0.1%ID/g for [68Ga]DOTA-RGD ([111In]DOTA-RGD: 1.9 ± 0.3%ID/g and 0.5 ± 0.2%ID/g; [18F]Galacto-RGD: 1.6 ± 0.2%ID/g and 0.4 ± 0.1%ID/g). Thus, tumour uptake ratios were comparable. Due to approx. 3-fold higher blood pool activities for [68Ga]DOTA-RGD, tumour/blood ratios were higher for [111In]DOTA-RGD and [18F]Galacto-RGD. However, microPET studies demonstrated that visualisation of αvβ3-positive tumours using [68Ga]DOTA-RGD is possible.

Conclusions

Our data indicate that [68Ga]DOTA-RGD allows monitoring of αvβ3 expression. Especially, the much easier radiosynthesis compared to [18F]Galacto-RGD would make it an attractive alternative. However, due to higher blood pool activity, [18F]Galacto-RGD remains superior for imaging αvβ3 expression. Introduction of alternative chelator systems may overcome the disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA. Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist. J Clin Invest. 1999;103:47–54.

    Article  PubMed  CAS  Google Scholar 

  2. Creamer D, Sullivan D, Bicknell R, Barker J. Angiogenesis in psoriasis. Angiogenesis. 2002;5:231–6.

    Article  PubMed  CAS  Google Scholar 

  3. Bishop GG, McPherson JA, Sanders JM, Hesselbacher SE, Feldman MJ, McNamara CA, Gimple LW, Powers ER, Mousa SA, Sarembock IJ. Selective αvβ3-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation. 2001;103:1906–11.

    PubMed  CAS  Google Scholar 

  4. Chavakis E, Riecke B, Lin J, Linn T, Bretzel RG, Preissner KT, Brownlee M, Hammes HP. Kinetics of integrin expression in the mouse model of proliferative retinopathy and success of secondary intervention with cyclic RGD peptides. Diabetologia. 2002;45:262–7.

    Article  PubMed  CAS  Google Scholar 

  5. Folkman J. Role of angiogenesis in tumour growth and metastasis. Semin Oncol. 2002;29:15–8.

    PubMed  CAS  Google Scholar 

  6. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–6.

    Article  PubMed  CAS  Google Scholar 

  7. Alghisi GC, Ruegg C. Vascular integrins in [111In]DOTA-RGD tumour angiogenesis: mediators and therapeutic targets. Endothelium. 2006;13:113–35.

    Article  PubMed  CAS  Google Scholar 

  8. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumour angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des. 2004;10:1439–55.

    Article  PubMed  CAS  Google Scholar 

  9. Haubner R. αvβ3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med. Mol Imaging 2006;13:54–63.

    Article  CAS  Google Scholar 

  10. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, Schwaiger M. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem. 2004;15:61–9.

    Article  PubMed  CAS  Google Scholar 

  11. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001;61:1781–85.

    PubMed  CAS  Google Scholar 

  12. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005;2:e70.

    Article  PubMed  CAS  Google Scholar 

  13. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res. 2006;12:3942–49.

    Article  PubMed  CAS  Google Scholar 

  14. Decristoforo C, Knopp R, von Guggenberg E, Rupprich M, Dreger T, Hess A, et al. A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nucl Med Common. 2007;28:870–75.

    Article  CAS  Google Scholar 

  15. Breeman WA, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging. 2005;32:478–85.

    Article  PubMed  CAS  Google Scholar 

  16. Decristoforo C, Santos I, Pietzsch HJ, Kuenstler JU, Duatti A, Smith CJ, et al. Comparison of in vitro and in vivo properties of [99mTc]cRGD peptides labeled using different novel Tc-cores. Q J Nucl Med Mol Imaging. 2007;51:33–41.

    PubMed  CAS  Google Scholar 

  17. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET Focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46:455–63.

    PubMed  Google Scholar 

  18. Kim JS, Lee JS, Im KC, Kim SJ, Kim SY, Lee DS, et al. Performance measurement of the microPET Foucus 120 scanner. J Nucl Med. 2007;48:1527–35.

    Article  PubMed  Google Scholar 

  19. Heppeler A, Froidevaux S, Mäcke H, Jermann E, Behe M, Powell P, Hennig M. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J. 1999;5:1974–81.

    Article  CAS  Google Scholar 

  20. Clarke E, Martell A. Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13- and 14-membered tetraazamacrocycles. Inorg Chim Acta. 1991;190:37–46.

    Article  CAS  Google Scholar 

  21. Reichert D, Lewis J, Anderson C. Metal complexes as diagnostic tools. Coord Chem Rev. 1999;184:3–66.

    Article  CAS  Google Scholar 

  22. Decristoforo C, Mather SJ. 99m-Technetium-labelled peptide-HYNIC conjugates: effects of lipophilicity and stability on biodistribution. Nucl Med Biol. 1999;26:389–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Stefan Schwarz, Svetlana Sirakanyan and Sybille Reder are gratefully acknowledged for their excellent technical assistance. We thank Bettina Sarg, Division of Clinical Biochemistry, Medizinische Universität Innsbruck for carrying out the LC–MS analysis. David A. Cheresh, The Scripps Institute, La Jolla, CA was acknowledged for kindly providing the melanoma M21 and M21-L cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Haubner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decristoforo, C., Hernandez Gonzalez, I., Carlsen, J. et al. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging 35, 1507–1515 (2008). https://doi.org/10.1007/s00259-008-0757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0757-6

Keywords

Navigation