Skip to main content
Log in

Reversibility of ecstasy-induced reduction in serotonin transporter availability in polydrug ecstasy users

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Animal data suggest that the synthetic drug ecstasy may damage brain serotonin neurons. Previously we reported protracted reductions in the availability of the serotonin transporter (SERT), an index of integrity of the axon terminals of brain serotonergic neurons, in SERT-rich brain regions in current human ecstasy users. Comparison of current ecstasy users and former ecstasy users yielded some evidence that this reduction might be reversible. However, participant selection effects could not be ruled out. Therefore, follow-up examinations were performed in these subjects to test the following a priori hypothesis in a prospective longitudinal design that eliminates participant selection effects to a large extent: availability of the SERT increases towards normal levels when ecstasy use is stopped, and remains unchanged or is further decreased if use is continued.

Methods

Two follow-up positron emission tomography measurements using the SERT ligand [11C](+)McN5652 were completed by 15 current and nine former ecstasy users. All subjects used illicit drugs other than ecstasy, too. The time interval between repeated measurements was about 1 year. The time course of the availability of the SERT was analysed in the following SERT-rich regions: mesencephalon, putamen, caudate and thalamus.

Results

Current ecstasy users showed a consistent increase in the availability of the SERT in the mesencephalon during the study (Friedman test: p=0.010), which most likely was caused by a decrease in the intensity of ecstasy consumption (Spearman correlation coefficient −0.725, p=0.002). Former ecstasy users showed a consistent increase in SERT availability in the thalamus (Friedman test: p=0.006).

Conclusion

Ecstasy-induced protracted alterations in the availability of the SERT might be reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kish SJ. How strong is the evidence that brain serotonin neurons are damaged in human users of ecstasy? Pharmacol Biochem Behav 2002;71:845–55

    Article  PubMed  Google Scholar 

  2. McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA. Positron emission tomographic evidence of toxic effect of MDMA (“ecstasy”) on brain serotonin neurons in human beings. Lancet 1998;352:1433–7

    Article  PubMed  Google Scholar 

  3. Semple DM, Ebmeier KP, Glabus MF, O’Carroll RE, Johnstone EC. Reduced in vivo binding to the serotonin transporter in the cerebral cortex of MDMA (‘ecstasy’) users. Br J Psychiatry 1999;175:63–9

    PubMed  Google Scholar 

  4. Scheffel U, Szabo Z, Mathews WB, Finley PA, Dannals RF, Ravert HT, et al. In vivo detection of short- and long-term MDMA neurotoxicity—a positron emission tomography study in the living baboon brain. Synapse 1998;29:183–92

    Article  PubMed  Google Scholar 

  5. Reneman L, Lavalaye J, Schmand B, de Wolff FA, van den Brink W, den Heeten GJ, et al. Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”): preliminary findings. Arch Gen Psychiatry 2001;58:901–6

    Article  PubMed  Google Scholar 

  6. Reneman L, Booij J, de Bruin K, Reitsma JB, de Wolff FA, Gunning WB, et al. Effects of dose, sex, and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons. Lancet 2001;358:1864–9

    Article  PubMed  Google Scholar 

  7. Buchert R, Thomasius R, Nebeling B, Petersen K, Obrocki J, Jenicke L, et al. Long-term effects of “ecstasy” use on serotonin transporters of the brain investigated by PET. J Nucl Med 2003;44:375–84

    PubMed  Google Scholar 

  8. Buchert R, Thomasius R, Wilke F, Petersen K, Nebeling B, Obrocki J, et al. A voxel-based PET investigation of the long-term effects of “ecstasy” consumption on brain serotonin transporters. Am J Psychiatry 2004;161:1181–9

    Article  PubMed  Google Scholar 

  9. Thomasius R, Petersen K, Buchert R, Andresen B, Zapletalova P, Wartberg L, et al. Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users. Psychopharmacology (Berl) 2003;167:85–96

    Google Scholar 

  10. Diagnostic and statistical manual of mental disorders, 4th ed. Washington: American Psychiatric Association; 1994

  11. Szabo Z, Scheffel U, Mathews WB, Ravert HT, Szabo K, Kraut M, et al. Kinetic analysis of [11C]McN5652: a serotonin transporter radioligand. J Cereb Blood Flow Metab 1999;19:967–81

    Article  PubMed  Google Scholar 

  12. Buck A, Gucker PM, Schonbachler RD, Arigoni M, Kneifel S, Vollenweider FX, et al. Evaluation of serotonergic transporters using PET and [11C](+)McN-5652: assessment of methods. J Cereb Blood Flow Metab 2000;20:253–62

    Article  PubMed  Google Scholar 

  13. Parsey RV, Kegeles LS, Hwang DR, Simpson N, Abi-Dargham A, Mawlawi O, et al. In vivo quantification of brain serotonin transporters in humans using [11C]McN5652. J Nucl Med 2000;41:1465–77

    PubMed  Google Scholar 

  14. Szabo Z, McCann UD, Wilson AA, Scheffel U, Owonikoko T, Mathews WB, et al. Comparison of (+)-11C-McN5652 and 11C-DASB as serotonin transporter radioligands under various experimental conditions. J Nucl Med 2002;43:678–92

    PubMed  Google Scholar 

  15. Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss W-D. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 1992;16:804–13

    PubMed  Google Scholar 

  16. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995;2:189–210

    Article  Google Scholar 

  17. Ichise M, Ballinger JR, Golan H, Vines D, Luong A, Tsai S, et al. Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J Nucl Med 1996;37:513–20

    PubMed  Google Scholar 

  18. Buchert R, Wilke F, van den Hoff J, Mester J. Improved statistical power of the multilinear reference tissue approach to the quantification of neuroreceptor ligand binding by regularization. J Cereb Blood Flow Metab 2003;23:612–20

    Article  PubMed  Google Scholar 

  19. Laruelle M, Vanisberg M-A, Maloteaux J-M. Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites. Biol Psychiatry 1988;24:299–309

    Article  PubMed  Google Scholar 

  20. Kish SJ, Furukawa Y, Chang LJ, Tong J, Ginovart N, Wilson A, et al. Regional distribution of serotonin transporter protein in postmortem human brain: is the cerebellum a SERT-free brain region? Nucl Med Biol 2005;32:123–8

    Article  PubMed  Google Scholar 

  21. American Psychiatric Association, ed. Diagnostic and statistical manual of mental disorders (DSM-IV-Tr). 4th ed. Washington, DC: APA; 2000

    Google Scholar 

  22. Sabol KE, Lew R, Richards JB, Vosmer GL, Seiden LS. Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part I: synaptosomal uptake and tissue concentrations. J Pharmacol Exp Ther 1996;276:846–54

    PubMed  Google Scholar 

  23. Yamamoto M, Suhara T, Okubo Y, Ichimiya T, Sudo Y, Inoue M, et al. Age-related decline of serotonin transporters in living human brain of healthy males. Life Sci 2002;71:751–7

    Article  PubMed  Google Scholar 

  24. Hesse S, Barthel H, Murai T, Muller U, Muller D, Seese A, et al. Is correction for age necessary in neuroimaging studies of the central serotonin transporter? Eur J Nucl Med Mol Imaging 2003;30:427–30

    PubMed  Google Scholar 

  25. Volkow ND, Chang L, Wang G-J, Fowler JS, Franceschi D, Sedler M, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 2001;21:9414–8

    PubMed  Google Scholar 

  26. Buchert R, Obrocki J, Thomasius R, Vaterlein O, Petersen K, Jenicke L, et al. Long-term effects of ‘ecstasy’ abuse on the human brain studied by FDG PET. Nucl Med Commun 2001;22:889–97

    Article  PubMed  Google Scholar 

  27. Cole JC, Sumnall HR. Altered states: the clinical effects of ecstasy. Pharmacol Ther 2003;98:35–58

    Article  PubMed  Google Scholar 

  28. Harkey MR. Anatomy and physiology of hair. Forensic Sci Int 1993;63:9–18

    Article  PubMed  Google Scholar 

  29. Mas M, Farre M, de la Torre R, Roset PN, Ortuno J, Segura J, et al. Cardiovascular and neuroendocrine effects and pharmacokinetics of 3,4-methylenedioxymethamphetamine in humans. J Pharmacol Exp Ther 1999;290:136–45

    PubMed  Google Scholar 

  30. Esteban B, O’Shea E, Camarero J, Sanchez V, Green AR, Colado MI. 3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose. Psychopharmacology (Berl) 2001;154:251–60

    Article  Google Scholar 

  31. Parrott AC. Chronic tolerance to recreational MDMA (3,4-methylenedioxymethamphetamine) or ecstasy. J Psychopharmacol 2005;19:71–83

    Article  PubMed  Google Scholar 

  32. Cole JC, Bailey M, Sumnall HR, Wagstaff GF, King LA. The content of ecstasy tablets: implications for the study of their long-term effects. Addiction 2002;97:1531–6

    Article  PubMed  Google Scholar 

  33. Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB. Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 1988;149:159–63

    Article  PubMed  Google Scholar 

  34. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973;22:3099–108

    PubMed  Google Scholar 

  35. Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S. Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of 11C-labeled 2-(phenylthio)araalkylamines. J Med Chem 2000;43:3103–10

    Article  PubMed  Google Scholar 

  36. Frankle WG, Slifstein M, Hwang DR, Huang Y, Talbot PS, Narendran R, et al. Reproducibility of derivation of serotonin transporter parameters with [11C]DASB in healthy humans: comparison of methods. J Nucl Med 2003;44 (Supplement)

  37. O’Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME. Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 1988;8:2788–803

    PubMed  Google Scholar 

  38. Zhou FC, Tao-Cheng JH, Segu L, Patel T, Wang Y. Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain Res 1998;805:241–54

    Article  PubMed  Google Scholar 

  39. Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS. Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 1987;241:338–45

    PubMed  Google Scholar 

  40. Cannon DM, Keenan AK, Guiry PJ, Buon C, Baird AW, McBean GJ. In vitro neuronal and vascular responses to 5-HT in rats chronically exposed to MDMA. Br J Pharmacol 2001;134:1455–60

    Article  PubMed  Google Scholar 

  41. Kish SJ, Furukawa Y, Ang L, Vorce SP, Kalasinsky KS. Striatal serotonin is depleted in brain of a human MDMA (ecstasy) user. Neurology 2000;55:294–6

    PubMed  Google Scholar 

  42. Hummerich R, Reischl G, Ehrlichmann W, Machulla HJ, Heinz A, Schloss P. DASB-in vitro binding characteristics on human recombinant monoamine transporters with regard to its potential as positron emission tomography (PET) tracer. J Neurochem 2004;90:1218–26

    Article  PubMed  Google Scholar 

  43. Hatzidimitriou G, McCann UD, Ricaurte GA. Altered serotonin innervation patterns in the forebrain of monkeys treated with (±)3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery. J Neurosci 1999;19:5096–107

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Federal Institute for Drugs and Medical Devices (FZ: Z12.01-68503-206), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Buchert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchert, R., Thomasius, R., Petersen, K. et al. Reversibility of ecstasy-induced reduction in serotonin transporter availability in polydrug ecstasy users. Eur J Nucl Med Mol Imaging 33, 188–199 (2006). https://doi.org/10.1007/s00259-005-1850-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1850-8

Keywords

Navigation