Skip to main content
Log in

Parameterization and regionalization of redox based denitrification for GIS-embedded nitrate transport modeling in Pleistocene aquifer systems

  • Original Article
  • Published:
Environmental Geology

Abstract

At the regional scale, more and more questions are arising regarding the evaluation of management strategies to minimize the nutrient input into ground- and surface water. Therefore, the quantification of the chemical transformation processes and the spatio-temporal differentiation of the nitrate transport behavior at regional scales are essential. The EU Water Framework Directive (WFD) stipulated new sustainable management concepts in the face of climate change and the change of land use systems. Considering the prospective changes, a valid prediction of the substance flux using scale-dependent adapted model tools is a necessity. The objective of this paper is the parameterization of redox based denitrification dynamics in groundwater via the entire flow path from recharge to discharge by the geochemical proxies redox potential and Fe-concentration. The used model approach Model of Diffuse Emissions via Subsurface Trails (MODEST) combines GIS embedded grid-based conceptual groundwater flow and substance transport modeling at larger scales with substance degradation rates, the latter based on denitrification half-lives between 6 months and 120 years determined for the individual compartments of the modeled region, the State Brandenburg. The resulting regional nitrate retention potential represents the basic information for the evaluation of renovated, sustainable land and water management approaches, mitigating diffuse nitrate pollution in the younger Pleistocene glacial landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott MB, Refsgard Ch (1996) Distributed hydrological modelling, vol 22. p. m. Water Science and Technology Library. Dordrecht

  • Akin H, Siemes H (1988) Praktische Geostatistik: Eine Einführung für den Bergbau und die Geowissenschaften. 304 Seiten. Springer, Berlin

  • Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. A. A. Balkema, Rotterdam

    Google Scholar 

  • Behrendt H, Dannowski R (eds) (2005) Nutrients and heavy metals in the Odra river system—emissions from point and diffuse sources, their loads, and scenario calculations on possible changes. Weißensee Verlag, Berlin, 353 p

  • Behrendt H, Huber P, Ley M, Opitz D, Schmoll O, Scholz G, Uebe R (1999) Nährstoffbilanzierung der Flussgebiete Deutschlands. Forschungsbericht IGB Berlin, 288 p

  • Berner RA (1981a) A new geochemical classification of sedimentary environments. J Sediment Petrol 51(2):359–365

    Google Scholar 

  • Berner RA (1981b) Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortschr Mineral 59:117–135

    Google Scholar 

  • Blank B (2006) Qualitative und quantitative Charakterisierung des Nitratabbaus im oberflächennahen Grundwasser des Einzugsgebietes Schaugraben anhand von Feld- und Laborversuchen. Dissertation UFZ Leipzig/Halle. ISSN 1860-0387

  • Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:438–439

    Article  Google Scholar 

  • Böhlke JK, Wanty R, Tuttle M, Delin D, Landon M (2002) Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash and aquifer, Minnesota. Water Resour Res 38:1–26

    Article  Google Scholar 

  • Böttcher J, Strebel O, Voerkelius S, Schmidt HL (1990) Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424

    Article  Google Scholar 

  • Buchau G, Artinger R, Geyers S, Wolf M, Fritz P, Kim JI (2000) Groundwater in situ generation of aquatic humic and fulvic acids and the mineralization of sedimentary organic carbon. Appl Geochem 15:819–832

    Article  Google Scholar 

  • Busch K, Luckner L, Tiemer K (1993) Geohydraulik. Gebr. Borntraeger, Berlin

  • Cepek AG (1999) Die Lithofazieskarten Quartär 1:50000 (LKQ 50)—eine Erläuterung des Kartenkonzepts mit Hinweisen für den Gebrauch. Brandenburg Geowiss Beitr 6(2):3–38

    Google Scholar 

  • Champ DR, Gulens J, Jackson RE (1979) Oxidation reduction sequences in ground water flow systems. Can J Earth Sci 16:12–23

    Article  Google Scholar 

  • Dannowski R, Quast J, Balla H, Fritsche S (1994) Eintragspfad Grundwasser im Lockergesteinsbereich. In: Werner W, Wodsak H-P (eds) Stickstoff- und Phosphateintrag in die Fließgewässer Deutschlands unter besonderer Berücksichtigung des Eintraggeschehens im Lockergesteinsbereich der ehemaligen DDR. Schriftenreihe Agrarspectrum, Band 22. Dachverband Agrarforschung, pp 10–41

    Google Scholar 

  • Dassonville F, Renault P, Vallès V (2004) A model describing the interactions between anaerobic microbiology and geochemistry in a soil amended with glucose and nitrate. Eur J Soil Sci 55:29–45

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New York, 646 p

  • Dick RP, Christ RA, Istok JD, Iyamuremye F (2000) Nitrogen fractions and transformations of vadose zone sediments under intensive agriculture in Oregon. Soil Sci 165:505–515

    Article  Google Scholar 

  • Franko U, Oelschlägel B, Schenk S (1995) Modellierung von Bodenprozessen in Agrarlandschaften zur Untersuchung der Auswirkung möglicher Klimaveränderungen. UFZ-Bericht Nr. 3/1995. Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig

  • Froehlich PN, Klinkhammer GP, Luedtke NA, Heath GR, Cullen D, Dauphin P (1978) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  Google Scholar 

  • Galloway JN (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226

    Article  Google Scholar 

  • Green PA, Vorosmarty CJ, Meybeck M, Galloway JN, Peterson BJ, Boyer FW (2004) Pre-industrial and contemporary fluxes of nitrogen through rivers. A global assessment based on topology. Biogeochemistry 68:71–105

    Article  Google Scholar 

  • Hannappel S (1996) Die Beschaffenheit des Grundwassers in den hydrogeologischen Strukturen in den neuen Bundesländern. Berliner geowiss. Abhandlungen, Reihe A, Band 182. Freie Universität Berlin, 151 p

  • Hannappel S, Voigt H-J (1997) Beschaffenheitsmuster des Grundwassers im Lockergestein. In: Matschullat J, Tobschall H, Voigt H-J (Hrsg.) Umweltgeochemie. Springer, Heidelberg, pp 360–393

  • Hencke J, Schulz HD (1997) Laborsaulenversuche zum Redoxverhalten anorganischer Spurenstoffe. Z Dtsch Geol Ges 148(3–4):369–387

    Google Scholar 

  • Holzbecher E, Horner Ch, Massmann G, Pekdeger A, Merz C (2002) Redox-transport modelling for the Oderbruch aquifer. In: Schulz HD, Teutsch G (eds) Geochemical processes—concepts for modeling reactive transport in soils and groundwater. DFG-Wiley-VCH, pp 191–214

  • Hutchinson MF (1989) A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol 106:211–232

    Article  Google Scholar 

  • Kersebaum KC (2000) Model based evaluation of land use and management strategies in a nitrate polluted drinking water catchment in North-Germany. In: Lal L (ed) Integrated watershed management in the global environment. CRC, Boca Raton, pp 223–238

    Google Scholar 

  • Kersebaum C, Richter O (1994) A model approach to simulate C and N transformations through microbial biomass. Eur J Agron 3(4):355–360

    Article  Google Scholar 

  • Kersebaum KC, Reuter H, Lorenz K, Wendroth O (2005) Long term simulation of soil/crop interactions to estimate management zones and consequences for site specific nitrogen management considering water protection. In: Stafford J (ed) Precision agriculture. Proceedings of 5th European conference on precision agriculture, Uppsala, Sweden. Wageningen Academic Publishers, Wageningen, pp 795–802

  • Knisel WG (1980) CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems. Conservation Research Report No. 26. USDA, Washington, DC, 643 p

  • Kunkel R, Wendland F (2002) The GROWA98 model for water balance analysis in large river basins—the river Elbe case study. J Hydrol 259:152–162

    Article  Google Scholar 

  • Kunkel R, Wendland F, Albert H (1999) Zum Nitratabbau in den Grundwasser führenden Gesteinsschichten des Elbeeinzugsgebietes. Wasser Boden 51(9):16–19

    Google Scholar 

  • Massmann G, Tichomirowa M, Merz C, Pekdeger A (2003) Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch aquifer, Germany). J Hydrol 278:231–243

    Article  Google Scholar 

  • Massmann G, Pekdeger A, Merz C (2004) Redox processes in the Oderbruch polder groundwater flow system in Germany. Appl Geochem 19(6):863–886

    Article  Google Scholar 

  • Merz C, Steidl J, Dannowski R (1999) GIS-based conceptional hydrogeological data models for ground water modeling in glacially formed mesoscale watersheds. Hydrol Sci Technol 15(1–4):191–200

    Google Scholar 

  • Merz C, Kersebaum KC, Wurbs A (2000) Hydrogeological and geochemical investigations of agricultural implied nutrients on a typical groundmoraine site in NE-Germany. In: Elias V, Littlewood IG (eds) Catchment hydrological and biochemical processes in the changing environment. Technical Documents in Hydrology No. 37, UNESCO, Paris, pp 147–157

  • Merz C, Schuhmacher P, Quast J (2002) Geochemical processes in poldered floodplains—consequences for an integrated land and water management. In: Proceedings of the 18th international ICID Congress, Montreal, Canada. [CD-ROM] ISBN 81-85068-79-8

  • Merz C, Steidl J, Dannowski R (2005a) Identification and regionalization of geochemical processes in Younger Pleistocene aquifer systems. In: Integrated land and water resources management towards sustainable rural development. Proceedings of 21st European regional conference of the International Commission on Irrigation and Drainage, Müncheberg, pp 1–6

  • Merz C, Schuhmacher P, Winkler A, Pekdeger A (2005b) Identification and regional quantification of hydrochemical processes at the contact zone between anoxic groundwater and surface water in poldered floodplains (Oderbruch polder, Germany). Appl Geochem 20(2):241–254

    Article  Google Scholar 

  • Mirschel W, Wieland R, Jochheim H, Kersebaum KC, Wegehenkel M, Wenkel K-O (2002) Einheitliches Pflanzenwachstumsmodell für Ackerkulturen im Modellsystem, SOCRATES. In: Gnauck, A. (Hrsg.) Theorie und Modellierung von Ökosystemen. Skater Verlag, Aachen, pp 225–243

  • Onsoy YS, Harter T, Ginn TR, Horwath WR (2005) Spatial variability and transport of nitrate in deep alluvial vadose zone. Vadose Zone J 4:41–54

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2000) User’s guide to PHREEQC (version 2)—a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259. US Geological Survey, Reston, 312 pp

  • Postma D, Jakobsen R (1996) Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim Cosmochim Acta 17:3169–3175

    Article  Google Scholar 

  • Postma D, Boesen C, Kristiansen H, Flemming L (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes and geochemical modelling. Water Resour Res 27(8):2027–2045

    Article  Google Scholar 

  • Richardson JL, Arndt JL, Montgomery JA (2001) Hydrology of wetland and related soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils, genesis, hydrology, alndscapes. Lewis Publishers, Boca Raton, pp 35–81

    Google Scholar 

  • Ritsema CJ, Groenenberg JE, Bisdom EBA (1992) The transformation of potential into actual sulphate soils studied in column experiments. Geoderma 55:259–271

    Article  Google Scholar 

  • Rolland W (1996) Organotrophe und chemolithoautotrophen Denitrifikation in der ungesättigten Zone - Messung und Simulation. Dissertation, TU Braunschweig

  • Schlesinger WH, Reckhow KH, Bernhardt ES (2006) Global change: the nitrogen cycle and rivers. Water Resour Res 42:W03S06

    Article  Google Scholar 

  • Schlieker M, Schuring J, Hencke J, Schulz HD (2001a) The influence of advective transport on redox fronts in column experiments and their numeric modelling (part 1): the influence of variable flow velocities on turnover rates of primary redox processes. Environ Geol 40:1353–1361

    Article  Google Scholar 

  • Schlieker M, Schuring J, Hencke J, Mai H, Schulz HD (2001b) The influence of advective transport on redox fronts in column experiments and their numeric modeling. Part 2: modeling of the solid phase and secondary redox reactions. Environ Geol 41:17–24

    Article  Google Scholar 

  • Smith RE (1992) Opus, an integrated simulation model for transport of nonpoint-source pollutants at the field scale, vols 1 and 2. ARS-98. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC

  • Steidl J, Dannowski R, Schindler U, Müller L (1997) Parametrisierung hydrologischer Modelle jungpleistozäner Einzugsgebiete am Beispiel von MIKE-SHE. In: Symposium Modellierung in der Hydrologie, Tagungsband, Dresden, pp 371–372

  • Steidl J, Merz C, Dannowski R (1999) GIS-gestützte Parameterisierung hydrogeologischer Datenmodelle für die Grundwassermodellierung in jungpleistozänen Einzugsgebieten. In: Fohrer N, Döll P (Hrsg.) Modellierung des Wasser- und Stofftransportes in großen Einzugsgebieten: workshop 19–20 November 1998 in Rauischholzhausen. Kassel University Press, Kassel, pp 197–206

  • Stumm W (1967) Redox potential as an environmental parameter; conceptual significance and operational limitation. Adv Water Pollut Res 1:283–308

    Google Scholar 

  • Voigt H-J (1987a): Hydrogeologisches Kartenwerk der Deutschen Demokratischen Republik, Nutzerrichtlinie für die hydrogeologische Grundkarte sowie die Karte der hydrogeologischen Kennwerte. Zentrales Geologisches Institut, Berlin, 42 p

  • Voigt H-J (1987b) Hydrogeologisches Kartenwerk der Deutschen Demokratischen Republik, Nutzerrichtlinie für die Karten der Grundwassergefährdung, Karte 4. Zentrales Geologisches Institut, Berlin, 16 p

  • Voigt H-J, Michel R-J (1997) Ein einfacher Ansatz zur Abschätzung der möglichen Denitrifikation in der Aerationszone. Mitt Dtsch Bodenkdl Ges 85:1421–1424

    Google Scholar 

  • Wendland F, Kunkel R (1997) WEKU, a GIS-supported stochastic model of groundwater residence times in upper aquifers for the supraregional groundwater management. Environ Geol 30(1/2):1–9

    Google Scholar 

  • Young RA, Onstad CA, Bosch DD, Anderson WP (1989) AGNPS: A nonpoint source pollution model for evaluating agricultural watersheds. J Soil Water Conserv 44:168–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Merz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merz, C., Steidl, J. & Dannowski, R. Parameterization and regionalization of redox based denitrification for GIS-embedded nitrate transport modeling in Pleistocene aquifer systems. Environ Geol 58, 1587–1599 (2009). https://doi.org/10.1007/s00254-008-1665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1665-6

Keywords

Navigation