Skip to main content
Log in

Elimination of diaminopeptidase activity in Pichia pastoris for therapeutic protein production

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast are important production platforms for the generation of recombinant proteins. Nonetheless, their use has been restricted in the production of therapeutic proteins due to differences in their glycosylation profile with that of higher eukaryotes. The yeast strain Pichia pastoris is an industrially important organism. Recent advances in the glycoengineering of this strain offer the potential to produce therapeutic glycoproteins with sialylated human-like N- and O-linked glycans. However, like higher eukaryotes, yeast also express numerous proteases, many of which are either localized to the secretory pathway or pass through it en route to their final destination. As a consequence, nondesirable proteolysis of some recombinant proteins may occur, with the specific cleavage being dependent on the class of protease involved. Dipeptidyl aminopeptidases (DPP) are a class of proteolytic enzymes which remove a two-amino acid peptide from the N-terminus of a protein. In P. pastoris, two such enzymes have been identified, Ste13p and Dap2p. In the current report, we demonstrate that while the knockout of STE13 alone may protect certain proteins from N-terminal clipping, other proteins may require the double knockout of both STE13 and DAP2. As such, this understanding of DPP activity enhances the utility of the P. pastoris expression system, thus facilitating the production of recombinant therapeutic proteins with their intact native sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Betenbaugh MJ, Tomiya N, Narang S, Hsu JT, Lee YC (2004) Biosynthesis of human-type N-glycans in heterologous systems. Curr Opin Struct Biol 14:601–606

    Article  CAS  PubMed  Google Scholar 

  • Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766

    Article  CAS  PubMed  Google Scholar 

  • Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi BK, Warburton S, Lin H, Patel R, Boldogh I, Meehl M, d’Anjou M, Pon L, Stadheim TA, Sethuraman N (2012) Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 95:671–682

    Article  CAS  PubMed  Google Scholar 

  • Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358:1109–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28:863–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosalkar A, Sahai V, Srivastava A (2008) Secretory expression of interferon-alpha 2b in recombinant Pichia pastoris using three different secretion signals. Protein Expr Purif 60:103–109

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Google Scholar 

  • Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR, Cook WJ, Gomathinayagam S, Burnina I, Bukowski J, Hopkins D, Schwartz S, Du M, Sharkey NJ, Bobrowicz P, Wildt S, Li H, Stadheim TA, Nett JH (2013) Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 23:1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Higashi H, Naiki M, Matuo S, Okouchi K (1977) Antigen of “serum sickness” type of heterophile antibodies in human sera: identification as gangliosides with N-glycolylneuraminic acid. Biochem Biophys Res Commun 79:388–395

    Article  CAS  PubMed  Google Scholar 

  • Hokke CH, Bergwerff AA, Vandedem GWK, Vanoostrum J, Kamerling JP, Vliegenthart JFG (1990) Sialylated carbohydrate chains of recombinant human glycoproteins expressed in Chinese-hamster ovary cells contain traces of N-glycolylneuraminic acid. FEBS Lett 275:9–14

    Article  CAS  PubMed  Google Scholar 

  • Hong WJ, Petell JK, Swank D, Sanford J, Hixson DC, Doyle D (1989) Expression of dipeptidyl peptidase IV in rat tissues is mainly regulated at the mRNA levels. Exp Cell Res 182:256–266

    Article  CAS  PubMed  Google Scholar 

  • Hopkins D, Gomathinayagam S, Rittenhour AM, Du M, Hoyt E, Karaveg K, Mitchell T, Nett JH, Sharkey NJ, Stadheim TA, Li H, Hamilton SR (2011) Elimination of beta-mannose glycan structures in Pichia pastoris. Glycobiology 21:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Julius D, Blair L, Brake A, Sprague G, Thorner J (1983) Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32:839–852

    Article  CAS  PubMed  Google Scholar 

  • Kumagai Y, Yajima A, Konishi K (2003) Peptidase activity of dipeptidyl aminopeptidase IV produced by Porphyromonas gingivalis is important but not sufficient for virulence. Microbiol Immunol 47:735–743

    Article  CAS  PubMed  Google Scholar 

  • Maeng BH, Choi J, Sa YS, Shin JH, Kim YH (2012) Functional expression of recombinant anti-BNP scFv in methylotrophic yeast Pichia pastoris and application as a recognition molecule in electrochemical sensors. World J Microbiol Biotechnol 28:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Matoba S, Morano KA, Klionsky DJ, Kim K, Ogrydziak DM (1997) Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica. Microbiology 143:3263–3272

    Article  CAS  PubMed  Google Scholar 

  • Misumi Y, Hayashi Y, Arakawa F, Ikehara Y (1992) Molecular cloning and sequence analysis of human dipeptidyl peptidase IV, a serine proteinase on the cell surface. Biochim Biophys Acta 1131:333–336

    Article  CAS  PubMed  Google Scholar 

  • Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng J (1997) High potency antagonists of the pancreatic glucagon-like peptide-1 receptor. J Biol Chem 272:21201–21206

    Article  CAS  PubMed  Google Scholar 

  • Nett JH, Gerngross TU (2003) Cloning and disruption of the PpURA5 gene and construction of a set of integration vectors for the stable genetic modification of Pichia pastoris. Yeast 20:1279–1290

    Google Scholar 

  • Prabha L, Govindappa N, Adhikary L, Melarkode R, Sastry K (2009) Identification of the dipeptidyl aminopeptidase responsible for N-terminal clipping of recombinant Exendin-4 precursor expressed in Pichia pastoris. Protein Expr Purif 64:155–161

    Article  CAS  PubMed  Google Scholar 

  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    Article  CAS  PubMed  Google Scholar 

  • Roberts CJ, Nothwehr SF, Stevens TH (1992) Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment. J Cell Biol 119:69–83

    Article  CAS  PubMed  Google Scholar 

  • Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17:341–346

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Rendueles P, Wolf DH (1987) Identification of the structural gene for dipeptidyl aminopeptidase yscV (DAP2) of Saccharomyces cerevisiae. J Bacteriol 169:4041–4048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of the Strain Development, Purification, Analytical, High Through-put Screening and Fermentation groups of GlycoFi, Inc. who supported this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hamilton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopkins, D., Gomathinayagam, S., Lynaugh, H. et al. Elimination of diaminopeptidase activity in Pichia pastoris for therapeutic protein production. Appl Microbiol Biotechnol 98, 2573–2583 (2014). https://doi.org/10.1007/s00253-013-5468-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5468-7

Keywords

Navigation