Skip to main content

Advertisement

Log in

Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechol Biofuels 3:4

    Article  Google Scholar 

  • ASTM D4243–99, (2009) Standard test method for measurement of average viscometric degree of polymerization of new and aged electrical papers and boards. ASTM International, West Conshohocken

    Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Technol 101:4461–4471

    Article  CAS  PubMed  Google Scholar 

  • Beeson WT, Phillips CM, Cate JHD, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892

    Article  CAS  PubMed  Google Scholar 

  • Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A, Okunev O, Gusakov A, Maximenko V, Gregg D, Sinitsyn A, Saddler J (2005a) Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates—evidence for the role of accessory enzymes. Enzym Microb Technol 37:175–184

    Article  CAS  Google Scholar 

  • Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005b) Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol 121–124:163–170

    Article  PubMed  Google Scholar 

  • Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase, and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209

    Article  CAS  PubMed  Google Scholar 

  • Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  CAS  PubMed  Google Scholar 

  • Brown EE, Hu DH, Abu Lail N, Zhang X (2013) Potential of nanocrystalline cellulose-fibrin nanocomposites for artificial vascular graft applications. Biomacromolecules 14:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Browning BL (1967) Methods of wood chemistry. John Wiley & Sons Inc, New York

    Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  PubMed  Google Scholar 

  • Chen Y, Stipanovic AJ, Winter WT, Wilson DB, Kim YJ (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293

    Article  CAS  Google Scholar 

  • Coughlan MP (1985) The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol Genet Eng Rev 3:39–109

    Article  CAS  Google Scholar 

  • Dai Z, Aryal UK, Shukla A, Qian W, Smith RD, Magnuson JK, Adney WS, Beckham GT, Brunecky R, Himmel ME, Decker SR, Ju X, Zhang X, Baker SE (2013) Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genet Biol. doi:10.1016/j.fgb.2013.09.004

    Google Scholar 

  • Drissen RET, Maas RHW, Van Der Maarel MJEC, Kabel MA, Schols HA, Tramper J, Beeftink HH (2007) A generic model for glucose production from various cellulose sources by a commercial cellulase complex. Biocatal Biotransform 25:419–429

    Article  CAS  Google Scholar 

  • Fox JM, Levine SE, Clark DS, Blanch HW (2012) Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes. Biochemistry 51:442–452

    Article  CAS  PubMed  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  • Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Lee YY (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 102:1570–1581

    Article  CAS  PubMed  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582

    Article  CAS  PubMed  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson LS, Campbell JM, Koljonen K, Stenius P (1999) Evaluation of surface lignin on cellulose fibers with XPS. Appl Surf Sci 144–45:92–95

    Article  Google Scholar 

  • Ju X, Engelhard M, Zhang X (2013a) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145

    Article  CAS  PubMed  Google Scholar 

  • Ju X, Grego C, Zhang X (2013b) Specific effects of fiber size and fiber swelling on biomass substrate surface area and enzymatic digestibility. Bioresour Technol 144:232–239

    Article  CAS  PubMed  Google Scholar 

  • Kabel MA, van der Maarel MJEC, Klip G, Voragen AGJ, Schols HA (2006) Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnol Bioeng 93:56–63

    Article  CAS  PubMed  Google Scholar 

  • Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filee P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. PNAS 105:16876–16881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Krassig HA (1993) Cellulose, structure, accessibility, and reactivity, vol 11. Gordon and Breach Science publisher, New York

    Google Scholar 

  • Kumar D, Murthy GS (2013) Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnol Biofuels 6:63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Bourvellec C, Renard CMGC (2012) Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Crit Rev Food Sci Nutr 52:213–248

    Article  PubMed  Google Scholar 

  • Lee SB, Kim IH, Ryu DDY, Taguchi H (1983) Structural-properties of cellulose and cellulase reaction-mechanism. Biotechnol Bioeng 25:33–51

    Article  CAS  PubMed  Google Scholar 

  • Levine SE, Fox JM, Clark DS, Blanch HW (2011) A mechanistic model for rational design of optimal cellulase mixtures. Biotechnol Bioeng 108:2561–2570

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu H, Fu SY, Zhan HY (2011) Surface hydrophobicity modification of cellulose fibers by layer-by-layer self-assembly of lignosulfonates. Bioresource 6:1681–1695

    CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  PubMed  Google Scholar 

  • Mcqueenmason S, Cosgrove DJ (1994) Disruption of hydrogen-bonding between plant-cell wall polymers by proteins that induce wall extension. PNAS 91:6574–6578

    Article  CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Biofuels 108:95–120

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties, and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Ozdal T, Capanoglu E, Altay F (2013) A review on protein-phenolic interactions and associated changes. Food Res Int 51:954–970

    Article  CAS  Google Scholar 

  • Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenergy 2:25–32

    Article  Google Scholar 

  • Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Persson I, Tjerneld F, Hahn-Hägerdal B (1991) Fungal cellulolytic enzyme-production - a review. Process Biochem 26:65–74

    Article  CAS  Google Scholar 

  • Rosgaard L, Pedersen S, Cherry JR, Harris P, Meyer AS (2006) Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnol Prog 22:493–498

    Article  CAS  PubMed  Google Scholar 

  • Rouxhet PG, Genet MJ (2011) XPS analysis of bio-organic systems. Surf Interface Anal 43:1453–1470

    Article  CAS  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex Res J 29:786–794

    Article  Google Scholar 

  • Seiji N, Richard PC, Jack NS (2001) The influence of lignin on the enzymatic hydrolysis of pretreated biomass substrates. In: Zhu J, Zhang X, Pan X (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass. American Chemical Society, Washington, pp 145–167

    Google Scholar 

  • Sewalt VJH, Glasser WG, Beauchemin KA (1997) Lignin impact on fiber degradation 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem 45:1823–1828

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL/TP-510-42623 NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO. www.nrel.gov/biomass/pdfs/42623.pdf

  • TAPPI, Peachtree Corners, GA (2007) T204 cm-07 “Solvent extractives of wood and pulp”.

  • TAPPI, Peachtree Corners, GA (2009) T249 cm-09 “Carbohydrate composition of extractive-free wood and wood pulp”.

  • TAPPI, Peachtree Corners, GA (2011) T222 om-11 “Acid-Insoluble Lignin in Wood and Pulp”.

  • TAPPI, Peachtree Corners, GA (2012) T211 om-12 “Ash in Wood, Pulp, Paper, and Paperboard”.

  • TAPPI, Peachtree Corners, GA (2013) T236 om-13 “Kappa number of pulp”.

  • Tejirian A, Xu F (2011) Inhibition of enzymatic cellulolysis by phenolic compounds. Enzym Microb Technol 48:239–247

    Article  CAS  Google Scholar 

  • Tu MB, Chandra RP, Saddler JN (2007) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog 23:1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Wyman CE (1999) Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226

    Article  Google Scholar 

  • Xiao Z, Zhang X, Gregg D, Saddler J (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 115:1115–1126

    Article  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzym Microb Technol 46:170–176

    Article  CAS  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzym Microb Technol 48:54–60

    Article  CAS  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zhang X, Qin WJ, Paice MG, Saddler JN (2009) High consistency enzymatic hydrolysis of hardwood substrates. Bioresour Technol 100:5890–5897

    Article  CAS  PubMed  Google Scholar 

  • Zifcakova L, Baldrian P (2012) Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecol 5:481–489

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the National Science Foundation (award number 1067012). The X-ray photoelectron spectroscopy and X-ray diffraction research was performed in EMSL, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory in Richland, Washington. We also thank Novozymes North America, DSM, and Dupont for supplying the enzyme preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, X., Bowden, M., Engelhard, M. et al. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates. Appl Microbiol Biotechnol 98, 4409–4420 (2014). https://doi.org/10.1007/s00253-013-5450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5450-4

Keywords

Navigation