Skip to main content

Advertisement

Log in

Tracking human sewage microbiome in a municipal wastewater treatment plant

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Human sewage pollution is a major threat to public health because sewage always comes with pathogens. Human sewage is usually received and treated by wastewater treatment plants (WWTPs) to control pathogenic risks and ameliorate environmental health. However, untreated sewage that flows into water environments may cause serious waterborne diseases, as reported in India and Bangladesh. To examine the fate of the human sewage microbiome in a local municipal WWTP of Hong Kong, we used massively parallel sequencing of 16S rRNA gene to systematically profile microbial communities in samples from three sections (i.e., influent, activated sludge, and effluent) obtained monthly throughout 1 year. The results indicated that: (1) influent sewage bacterial profile reflected the human microbiome; (2) human gut bacterial community was the dominant force shaping influent sewage bacterial profile; (3) most human sewage bacteria could be effectively removed by the WWTP; (4) a total of 75 genera were profiled as potentially pathogenic bacteria, most of which were still present in the effluent although at a very low level; (5) a grouped pattern of bacterial community was observed among the same section samples but a dispersed pattern was found among the different section samples; and (6) activated sludge was less affected by the influent sewage bacteria, but it showed a significant impact on the effluent bacteria. All of these findings provide novel insights toward a mechanistic understanding of the fate of human sewage microbiome in the WWTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed W, Richardson K, Sidhu JPS, Toze S (2012) Escherichia coli and Enterococcus spp. in rainwater tank samples: comparison of culture-based methods and 23S rRNA gene quantitative PCR assays. Environ Sci Technol 46(20):11370–11376

    Article  PubMed  CAS  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin JJ, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Weissenbach J, Ehrlich SD, Bork P, Consortium M (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Meth 55(3):541–555

    Article  CAS  Google Scholar 

  • Baumann B, Snozzi M, Zehnder AJ, Van Der Meer JR (1996) Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic–anaerobic changes. J Bacteriol 178(15):4367–4374

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cai L, Ye L, Tong AH, Lok S, Zhang T (2013) Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS One 8(1):e53649

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cai L, Zhang T (2013) Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environ Sci Technol 47(10):5433–5441

    Article  PubMed  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen GX, Walker SL (2012) Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media. Environ Sci Technol 46(16):8782–8790

    Article  PubMed  CAS  Google Scholar 

  • Claesson MJ, Wang QO, O'Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O'Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38(22):e200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dubinsky EA, Esmaili L, Hulls JR, Cao YP, Griffith JF, Andersen GL (2012) Application of phylogenetic microarray analysis to discriminate sources of fecal pollution. Environ Sci Technol 46(8):4340–4347

    Article  PubMed  CAS  Google Scholar 

  • Facklam R (2002) What happened to the Streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15(4):613–630

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferguson AS, Layton AC, Mailloux BJ, Culligan PJ, Williams DE, Smartt AE, Sayler GS, Feighery J, McKay LD, Knappett PS, Alexandrova E, Arbit T, Emch M, Escamilla V, Ahmed KM, Alam MJ, Streatfield PK, Yunus M, van Geen A (2012) Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. Sci Total Environ 431:314–322

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182(17):4677–4687

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Funke G, Frodl R, Sommer H (2004) First comprehensively documented case of Paracoccus yeei infection in a human. J Clin Microbiol 42(7):3366–3368

    Article  PubMed Central  PubMed  Google Scholar 

  • Gordon KV, Brownell M, Wang SY, Lepo JE, Mott J, Nathaniel R, Kilgen M, Hellein KN, Kennedy E, Harwood VJ (2013) Relationship of human-associated microbial source tracking markers with Enterococci in Gulf of Mexico waters. Water Res 47(3):996–1004

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Zhang T (2013) Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl Microbiol Biotechnol 97(10):4607–4616

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  CAS  Google Scholar 

  • Jeanneau L, Solecki O, Wery N, Jarde E, Gourmelon M, Communal PY, Jadas-Hecart A, Caprais MP, Gruau G, Pourcher AM (2012) Relative decay of fecal indicator bacteria and human-associated markers: a microcosm study simulating wastewater input into seawater and freshwater. Environ Sci Technol 46(4):2375–2382

    Article  PubMed  CAS  Google Scholar 

  • Kohler W (2007) The present state of species within the genera Streptococcus and Enterococcus. Int J Med Microbiol 297(3):133–150

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotech 24(2):160–168

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Lee S, Sung J, Ko G (2011) Analysis of human and animal fecal microbiota for microbial source tracking. ISME J 5(2):362–365

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu ZP, Wang BJ, Liu XY, Dai X, Liu YH, Liu SJ (2008) Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 58(Pt 1):257–261

    Article  PubMed  CAS  Google Scholar 

  • Machado-Ferreira E, Piesman J, Zeidner NS, Soares CA (2012) A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense) from Rio de Janeiro, Brazil. Genet Mol Biol 35(4):862–867

    Article  PubMed Central  PubMed  Google Scholar 

  • McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12(2):378–392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McLellan SL, Newton RJ, Vandewalle JL, Shanks OC, Huse SM, Eren AM, Sogin ML (2013) Sewage reflects the distribution of human faecal Lachnospiraceae. Environ Microbiol 15(8):2213–2227

    Google Scholar 

  • Murugan K, Prabhakaran P, Al-Sohaibani S, Sekar K (2012) Identification of source of faecal pollution of Tirumanimuttar River, Tamilnadu, India using microbial source tracking. Environ Monit Assess 184(10):6001–6012

    Article  PubMed  CAS  Google Scholar 

  • Newton RJ, VandeWalle JL, Borchardt MA, Gorelick MH, McLellan SL (2011) Lachnospiraceae and Bacteroidales alternative fecal indicators reveal chronic human sewage contamination in an urban harbor. Appl Environ Microbiol 77(19):6972–6981

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pandey PK, Verma P, Kumar H, Bavdekar A, Patole MS, Shouche YS (2012) Comparative analysis of fecal microflora of healthy full-term Indian infants born with different methods of delivery (vaginal vs cesarean): Acinetobacter sp. prevalence in vaginally born infants. J Biosci 37(6):989–998

    Article  PubMed  Google Scholar 

  • Pickering AJ, Julian TR, Marks SJ, Mattioli MC, Boehm AB, Schwab KJ, Davis J (2012) Fecal contamination and diarrheal pathogens on surfaces and in soils among Tanzanian households with and without improved sanitation. Environ Sci Technol 46(11):5736–5743

    Article  PubMed  CAS  Google Scholar 

  • Prakash S, Tomaro-Duchesneau C, Saha S, Cantor A (2011) The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J Biomed Biotechnol 2011:981214

  • Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108(Suppl 1):4680–4687

    Article  PubMed Central  PubMed  Google Scholar 

  • Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P (2013) Genomic variation landscape of the human gut microbiome. Nature 493(7430):45–50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shanks OC, Newton RJ, Kelty CA, Huse SM, Sogin ML, McLellan SL (2013) Comparison of the microbial community structures of untreated wastewaters from different geographic locales. Appl Environ Microbiol 79(9):2906–2913

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shanks OC, Sivaganesan M, Peed L, Kelty CA, Blackwood AD, Greene MR, Noble RT, Bushon RN, Stelzer EA, Kinzelman J, Anan'eva T, Sinigalliano C, Wanless D, Griffith J, Cao YP, Weisberg S, Harwood VJ, Staley C, Oshima KH, Varma M, Haugland RA (2012) Interlaboratory comparison of real-time PCR protocols for quantification of general fecal indicator bacteria. Environ Sci Technol 46(2):945–953

    Article  PubMed  CAS  Google Scholar 

  • Sidhu JP, Hodgers L, Ahmed W, Chong MN, Toze S (2012) Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia. Water Res 46(20):6652–6660

    Article  PubMed  CAS  Google Scholar 

  • Staley C, Reckhow KH, Lukasik J, Harwood VJ (2012) Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake. Water Res 46(17):5799–5812

    Article  PubMed  CAS  Google Scholar 

  • Unno T, Jang J, Han D, Kim JH, Sadowsky MJ, Kim OS, Chun J, Hur HG (2010) Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environ Sci Technol 44(20):7777–7782

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wery N, Monteil C, Pourcher AM, Godon JJ (2010) Human-specific fecal bacteria in wastewater treatment plant effluents. Water Res 44(6):1873–1883

    Article  PubMed  CAS  Google Scholar 

  • Woolhouse M, Gowtage-Sequeria S, Evans B (2006) T16: quantitative analysis of the characteristics of emerging and re-emerging human pathogens. Centre for Infectious Diseases, University of Edinburgh

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang T, Shao MF, Ye L (2012) 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng Q, Wang Y, Chen C, Xia X, Fu Y, Zhang R, Jiao N (2011) Paracoccus beibuensis sp. nov., isolated from the South China Sea. Curr Microbiol 62(3):710–714

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Lin Cai thanks The University of Hong Kong for the Postdoctoral Fellowship. The authors wish to thank Agnes Chan and Wilson Chan for their technical support and service on 454 pyrosequencing. The authors also acknowledge the Research Grants Council of Hong Kong for the financial support of this study (HKU7201/11E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, L., Ju, F. & Zhang, T. Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 98, 3317–3326 (2014). https://doi.org/10.1007/s00253-013-5402-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5402-z

Keywords

Navigation