Skip to main content
Log in

Tools for genetic manipulations in Corynebacterium glutamicum and their applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum is an important industrial producer of various amino acids with great potential for the production of other metabolites. The complete genome sequences of two C. glutamicum strains were determined and the use of genome-based approaches (transcriptomics, proteomics, metabolomics, and fluxomics) provided large amounts of data on the metabolism of this bacterium and its regulation. Many tools for genetic manipulations in C. glutamicum have been developed and used for the analysis of gene functions as well as for the construction and improvement of production strains. These tools include various types of plasmid vectors (cloning, promoter–probe, and expression vectors), DNA transfer methods, cloning heterologous genes, introducing protein secretion systems and gene replacement and genome rearrangement methods. Here we summarize the latest developments in the field of genetic engineering in C. glutamicum, give examples of the use of these new tools, and mention the challenges which stand in the way of fully implementing these tools and this acquired knowledge for the construction of superior production strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adham SA, Campelo AB, Ramos A, Gil JA (2001) Construction of a xylanase-producing strain of Brevibacterium lactofermentum by stable integration of an engineered xysA gene from Streptomyces halstedii JM8. Appl Environ Microbiol 67:5425–5430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amador E, Martín JF, Castro JM (2000) A Brevibacterium lactofermentum 16S rRNA gene used as target site for homologous recombination. FEMS Microbiol Lett 185:199–204

    Article  CAS  PubMed  Google Scholar 

  • Arndt A, Eikmanns BJ (2007) The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189:7408–7416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    Article  CAS  PubMed  Google Scholar 

  • Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70:2861–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barriuso-Iglesias M, Barreiro C, Flechoso F, Martín JF (2006) Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology 152:11–21

    Article  PubMed  Google Scholar 

  • Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martín JF (2008) Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. BMC Microbiol 8:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartek T, Zönnchen E, Klein B, Gerstmeir R, Makus P, Lang S, Oldiges M (2010) Analysing overexpression of L-valine biosynthesis genes in pyruvate-dehydrogenase deficient Corynebacterium glutamicum. J Ind Microbiol Biotechnol 37:263–270

    Article  CAS  PubMed  Google Scholar 

  • Baumbach J, Wittkop T, Kleindt CK, Tauch A (2009) Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc 4:992–1005

    Article  PubMed  Google Scholar 

  • Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13:159–168

    Article  CAS  PubMed  Google Scholar 

  • Ben-Samoun K, Leblon G, Reyes O (1999) Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. FEMS Microbiol Lett 174:125–130

    Article  CAS  PubMed  Google Scholar 

  • Brabetz W, Liebl W, Schleifer KH (1991) Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch Microbiol 155:607–612

    Article  CAS  PubMed  Google Scholar 

  • Brune I, Brinkrolf K, Kalinowski J, Pühler A, Tauch A (2005) The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6:306–317

    Article  CAS  PubMed  Google Scholar 

  • Carpinelli J, Krämer R, Agosin E (2006) Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72:1949–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H (2007) Innovative metabolic pathway design for efficient L-glutamate production by suppressing CO2 emission. J Biosci Bioeng 103:262–269

    Article  CAS  PubMed  Google Scholar 

  • Date M, Itaya H, Matsui H, Kikuchi Y (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Reyes O (2005) Experiments. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 535–566

    Chapter  Google Scholar 

  • Ehira S, Teramoto H, Inui M, Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191:2964–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    Article  CAS  PubMed  Google Scholar 

  • Fiuza M, Letek M, Leiba J, Villadangos AF, Vaquera J, Zanella-Cleon I, Mateos LM, Molle V, Gil JA (2010) Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shaped morphology in Corynebacterium glutamicum. J Biol Chem 285:29387–29397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fränzel B, Poetsch A, Trötschel C, Persicke M, Kalinowski J, Wolters DA (2010a) Quantitative proteomic overview on the Corynebacterium glutamicum L-lysine producing strain DM1730. J Proteomics 73:2336–2353

    Article  CAS  PubMed  Google Scholar 

  • Fränzel B, Trötschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA (2010b) Adaptation of Corynebacterium glutamicum to salt-stress conditions. Proteomics 10:445–457

    Article  CAS  PubMed  Google Scholar 

  • Frunzke J, Bramkamp M, Schweitzer JE, Bott M (2008) Population heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3. J Bacteriol 190:5111–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ (2004) RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186:2798–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glanemann C, Loos A, Gorret N, Willis L, O’Brien XM, Lessard P, Sinskey AJ (2003) Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61:61–68

    Article  CAS  PubMed  Google Scholar 

  • Hänssler E, Müller T, Palumbo K, Pátek M, Brocker M, Krämer R, Burkovski A (2009) A game with many players: control of gdh transcription in Corynebacterium glutamicum. J Biotechnol 142:114–122

    Article  CAS  PubMed  Google Scholar 

  • Haussmann U, Qi SW, Wolters D, Rogner M, Liu SJ, Poetsch A (2009) Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source—a membrane proteome-centric view. Proteomics 9:3635–3651

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J, Watanabe S, Ota T, Ikeda M (2002) Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem 66:1337–1344

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550

    Article  CAS  PubMed  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  CAS  PubMed  Google Scholar 

  • Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Pühler A, Bendt AK, Krämer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723

    Article  CAS  PubMed  Google Scholar 

  • Hoffelder M, Raasch K, van Ooyen J, Eggeling L (2010) The E2 domain of OdhA of Corynebacterium glutamicum has succinyltransferase activity dependent on lipoyl residues of the acetyltransferase AceF. J Bacteriol 192:5203–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holátko J, Elišáková V, Prouza M, Sobotka M, Nešvera J, Pátek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210

    Article  CAS  PubMed  Google Scholar 

  • Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elišáková V, Pátek M, Kalinowski J, Brune I, Pühler A, Tauch A (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71:3255–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertes AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504

    Article  CAS  PubMed  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174:5462–5465

    Article  PubMed  PubMed Central  Google Scholar 

  • Jäger W, Schäfer A, Kalinowski J, Pühler A (1995) Isolation of insertion elements from gram-positive Brevibacterium, Corynebacterium and Rhodooccus strains using the Bacillus subtilis sacB gene as a positive selection marker. FEMS Microbiol Lett 126:1–6

    Article  PubMed  Google Scholar 

  • Jakoby M, Ngouoto-Nkili CE, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13:437–441

    Article  CAS  Google Scholar 

  • Jo SJ, Maeda M, Ooi T, Taguchi S (2006) Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J Biosci Bioeng 102:233–236

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Fujii M, Mori E, Inui M, Yukawa H (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl Microbiol Biotechnol 87:159–165

    Article  CAS  PubMed  Google Scholar 

  • Jungwirth B, Emer D, Brune I, Hansmeier N, Pühler A, Eikmanns BJ, Tauch A (2008) Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol Lett 281:190–197

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl Environ Microbiol 69:358–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF (2008) Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:67–74

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF (2009) TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion. Appl Environ Microbiol 75:603–607

    Article  CAS  PubMed  Google Scholar 

  • Kim IK, Jeong WK, Lim SH, Hwang IK, Kim YH (2010) The small ribosomal protein S12P gene rpsL as an efficient positive selection marker in allelic exchange mutation systems for Corynebacterium glutamicum. J Microbiol Methods 84:128–130

    Article  CAS  PubMed  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351

    Article  CAS  PubMed  Google Scholar 

  • Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102:583–597

    Article  CAS  PubMed  Google Scholar 

  • Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nešvera J, Pátek M (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55:234–239

    Article  CAS  PubMed  Google Scholar 

  • Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM (2010) Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Appl Environ Microbiol 76:370–374

    Article  CAS  PubMed  Google Scholar 

  • Larisch C, Nakunst D, Hüser AT, Tauch A, Kalinowski J (2007) The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM (2006) Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 188:409–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wada M, Yokota A (2007) Cytoplasmic proteome reference map for a glutamic acid-producing Corynebacterium glutamicum ATCC 14067. Proteomics 7:4317–4322

    Article  CAS  PubMed  Google Scholar 

  • Liebl W, Sinskey AJ, Schleifer KH (1992) Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J Bacteriol 174:1854–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Ouyang SP, Kim J, Chen GQ (2007) The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J Biotechnol 132:273–279

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang J, Wei XX, Ouyang SP, Wu Q, Chen GQ (2008) Microbial production of L-glutamate and L-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl Microbiol Biotechnol 77:1297–1304

    Article  CAS  PubMed  Google Scholar 

  • Loos A, Glanemann C, Willis LB, O’Brien XM, Lessard PA, Gerstmeir R, Guillouet S, Sinskey AJ (2001) Development and validation of Corynebacterium DNA microarrays. Appl Environ Microbiol 67:2310–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135

    Article  CAS  PubMed  Google Scholar 

  • Moreau S, Blanco C, Trautwetter A (1999) Site-specific integration of corynephage phi16: construction of an integration vector. Microbiology 145:539–548

    Article  CAS  PubMed  Google Scholar 

  • Muffler A, Bettermann S, Haushalter M, Horlein A, Neveling U, Schramm M, Sorgenfrei O (2002) Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98:255–268

    Article  CAS  PubMed  Google Scholar 

  • Nakamura J, Kanno S, Kimura E, Matsui K, Nakamatsu T, Wachi M (2006) Temperature-sensitive cloning vector for Corynebacterium glutamicum. Plasmid 56:179–186

    Article  CAS  PubMed  Google Scholar 

  • Nakata K, Inui M, Kos PB, Vertes AA, Yukawa H (2004) Vectors for genetic engineering of corynebacteria. In: Saha BC (ed) Fermentation biotechnology. American Chemical Society, Washington, pp 175–191

    Google Scholar 

  • Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J (2007) The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189:4696–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nešvera J, Pátek M (2008) Plasmids and promoters in corynebacteria and their applications. In: Burkovski A (ed) Corynebacteria. Genomics and molecular biology. Caister, Norfolk, pp 113–154

    Google Scholar 

  • Neuner A, Heinzle E (2011) Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol J 6:318–329

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Teramoto H, Inui M, Yukawa H (2008) DivS, a novel SOS-inducible cell-division suppressor in Corynebacterium glutamicum. Mol Microbiol 67:597–608

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Article  CAS  PubMed  Google Scholar 

  • Okibe N, Suzuki N, Inui M, Yukawa H (2009) Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett Appl Microbiol 50:173–180

    Article  CAS  PubMed  Google Scholar 

  • Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Meth. doi:https://doi.org/10.1016/j.mimet.2011.02.012

  • Oram M, Woolston JE, Jacobson AD, Holmes RK, Oram DM (2007) Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of corynebacteria. Gene 391:53–62

    Article  CAS  PubMed  Google Scholar 

  • Ozaki A, Katsumata R, Oka T, Furuya A (1984) Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Mol Gen Genet 196:175–178

    Article  CAS  PubMed  Google Scholar 

  • Park JU, Jo JH, Kim YJ, Chung SS, Lee JH, Lee HH (2008) Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes. J Microbiol Biotechnol 18:639–647

    PubMed  Google Scholar 

  • Pátek M, Nešvera J (2011a) Promoters and plasmid vectors of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Biology and biotechnology of Corynebacterium glutamicum. Springer (in press)

  • Pátek M, Nešvera J (2011b) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol. doi:https://doi.org/10.1016/j.jbiotec.2011.01.017

  • Pátek M, Eikmanns BJ, Pátek J, Sahm H (1996) Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142:1297–1309

    Article  PubMed  Google Scholar 

  • Pátek M, Nešvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323

    Article  CAS  PubMed  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  • Pfefferle W, Möckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. Adv Biochem Eng Biotechnol 79:59–112

    CAS  PubMed  Google Scholar 

  • Radford AJ, Hodgson AL (1991) Construction and characterization of a MycobacteriumEscherichia coli shuttle vector. Plasmid 25:149–153

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Honrubia MP, Valbuena N, Vaquera J, Mateos LM, Gil JA (2003) Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology 149:3531–3542

    Article  CAS  PubMed  Google Scholar 

  • Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salim K, Haedens V, Content J, Leblon G, Huygen K (1997) Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl Environ Microbiol 63:4392–4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaría R, Gil JA, Mesas JM, Martín JF (1984) Characterization of endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofementum. J Gen Microbiol 130:2237–2246

    Google Scholar 

  • Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106:51–58

    Article  CAS  PubMed  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol. doi:https://doi.org/10.1016/j.jbiotec.2010.07.009

  • Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737

    Article  CAS  PubMed  Google Scholar 

  • Schröder J, Jochmann N, Rodionov DA, Tauch A (2010) The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 11:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweitzer JE, Stolz M, Diesveld R, Etterich H, Eggeling L (2009) The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR. J Biotechnol 139:214–221

    Article  CAS  PubMed  Google Scholar 

  • Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124:381–391

    Article  CAS  PubMed  Google Scholar 

  • Silberbach M, Burkovski A (2006) Application of global analysis techniques to Corynebacterium glutamicum: new insights into nitrogen regulation. J Biotechnol 126:101–110

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnen H, Thierbach G, Kautz S, Kalinowski J, Schneider J, Pühler A, Kutzner HJ (1991) Characterization of pGA1, a new plasmid from Corynebacterium glutamicum LP-6. Gene 107:69–74

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P, Deb JK (2002) Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476. FEMS Microbiol Lett 212:209–216

    Article  CAS  PubMed  Google Scholar 

  • Stäbler N, Oikawa T, Bott M, Eggeling L (2011) Corynebacterium glutamicum as a host for the synthesis and export of D-amino acids. J Bacteriol. doi:https://doi.org/10.1128/JB.01295-10

  • Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005a) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71:8472–8480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M, Yukawa H (2005b) Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69:151–161

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Tsuge Y, Inui M, Yukawa H (2005c) Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol 67:225–233

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H (2009) Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl Microbiol Biotechnol 82:491–500

    Article  CAS  PubMed  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007a) Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541

    Article  CAS  PubMed  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007b) Production of L-lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A (2009a) Development of novel cell surface display in Corynebacterium glutamicum using porin. Appl Microbiol Biotechnol 84:733–739

    Article  CAS  PubMed  Google Scholar 

  • Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009b) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82:115–121

    Article  CAS  PubMed  Google Scholar 

  • Tauch A (2005) Native plasmids of amino acid-producing corynebacteria. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 57–80

    Chapter  Google Scholar 

  • Tauch A, Götker S, Pühler A, Kalinowski J, Thierbach G (2002) The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. J Biotechnol 99:79–91

    Article  CAS  PubMed  Google Scholar 

  • Tauch A, Pühler A, Kalinowski J, Thierbach G (2003) Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J Biotechnol 104:27–40

    Article  CAS  PubMed  Google Scholar 

  • Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A (2011) Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum. Appl Microbiol Biotechnol. doi:https://doi.org/10.1007/s00253-011-3116-7

  • Tsuchiya M, Morinaga Y (1988) Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Bio/Technology 6:428–430

    CAS  Google Scholar 

  • Tsuge Y, Suzuki N, Inui M, Yukawa H (2007a) Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 74:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Tsuge Y, Suzuki N, Ninomiya K, Inui M, Yukawa H (2007b) Isolation of a new insertion sequence, IS13655, and its application to Corynebacterium glutamicum genome mutagenesis. Biosci Biotechnol Biochem 71:1683–1690

    Article  CAS  PubMed  Google Scholar 

  • Vašicová P, Abrhámová Z, Nešvera J, Pátek M, Sahm H, Eikmanns B (1998) Integrating and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Tech 12:743–746

    Article  Google Scholar 

  • Vašicová P, Pátek M, Nešvera J, Sahm H, Eikmanns B (1999) Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol 181:6188–6191

    Article  PubMed  PubMed Central  Google Scholar 

  • Vertes AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994) Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol Microbiol 11:739–746

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl Environ Microbiol 68:5843–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M (2010) Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics. Appl Environ Microbiol 76:6910–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Tan Y, Huan X, Hu X, Wang X (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80:86–92

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Deng X, Liu M, Zheng P, Sun Z, Zhang Y (2009) Expression and localization of the Corynebacterium glutamicum NCgl1221 protein encoding an L-glutamic acid exporter. Microbiol Res 164:680–687

    Article  CAS  PubMed  Google Scholar 

  • Yasuda K, Jojima T, Suda M, Okino S, Inui M, Yukawa H (2007) Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 77:853–860

    Article  CAS  PubMed  Google Scholar 

  • Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF (2008) Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 190:6458–6466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant 204/09/J015 from the Scientific Council of the Czech Republic and by Institutional Research Concept No. AV0Z50200510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pátek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nešvera, J., Pátek, M. Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90, 1641–1654 (2011). https://doi.org/10.1007/s00253-011-3272-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3272-9

Keywords

Navigation