Skip to main content
Log in

Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The oxygenated β-carotene derivative astaxanthin exhibits outstanding colouring, antioxidative and health-promoting properties and is mainly found in the marine environment. To satisfy the growing demand for this ketocarotenoid in the feed, food and cosmetics industries, there are strong efforts to develop economically viable bioprocesses alternative to the current chemical synthesis. However, up to now, natural astaxanthin from Haematococcus pluvialis, Phaffia rhodozyma or Paracoccus carotinifaciens has not been cost competitive with chemically synthesized astaxanthin, thus only serving niche applications. This review illuminates recent advances made in elucidating astaxanthin biosynthesis in P. rhodozyma. It intensely focuses on strategies to increase astaxanthin titers in the heterobasidiomycetous yeast by genetic engineering of the astaxanthin pathway, random mutagenesis and optimization of fermentation processes. This review emphasizes the potential of P. rhodozyma for the biotechnological production of astaxanthin in comparison to other natural sources such as the microalga H. pluvialis, other fungi and transgenic plants and to chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acheampong EA, Martin AM (1995) Kinetic studies on the yeast Phaffia rhodozyma. J Basic Microbiol 35(3):147–155

    Article  CAS  Google Scholar 

  • Alcaíno J, Barahona S, Carmona M, Lozano C, Marcoleta A, Niklitschek M, Sepulveda D, Baeza M, Cifuentes V (2008) Cloning of the cytochrome P450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol 8:169

    Article  CAS  Google Scholar 

  • Álvarez V, Rodriguez-Saiz M, de la Fuente JL, Gudina EJ, Godio RP, Martin JF, Barredo JL (2006) The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol 43(4):261–272

    Article  CAS  Google Scholar 

  • An G-H, Johnson EA (1990) Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie Leeuwenhoek 57(4):191–203

    Article  CAS  Google Scholar 

  • An G-H, Schuman DB, Johnson EA (1989) Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 55(1):116–124

    CAS  Google Scholar 

  • An G-H, Bielich J, Auerbach R, Johnson EA (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Biotechnol NY 9(1):70–73

    Article  CAS  Google Scholar 

  • An G-H, Kim C-H, Choi E-S, Rhee S-K (1996) Medium optimization for cultivation of carotenoid hyperproducing Phaffia rhodozyma mutant HT-5FO1C. J Ferment Bioeng 82(5):515–518

    Article  CAS  Google Scholar 

  • An G-H, Jang BG, Cho MH (2001) Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses. J Biosci Bioeng 92(2):121–125

    Article  CAS  Google Scholar 

  • Andrewes AG, Starr MP (1976) (3R,3′R)-Astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry 15(6):1009–1011

    Article  CAS  Google Scholar 

  • Andrewes A, Phaff H, Starr M (1976) Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15(6):1003–1007

    Article  CAS  Google Scholar 

  • BCC Research (2008) The global market for carotenoids (FOD025C). http://www.bccresearch.com. Accessed 10 July 2010

  • BCC Research (2009) World markets for fermentation ingredients (FOD020C). http://www.bccresearch.com. Accessed 10 July 2010

  • Bernhard K, Müller RK, Spruijtenburg R (1984) Process for the preparation of astaxanthin and intermediates in the astaxanthin synthesis. European Patent EP0101597

  • Berry A, Janssens D, Humbelin M, Jore JP, Hoste B, Cleenwerck I, Vancanneyt M, Bretzel W, Mayer AF, Lopez-Ulibarri R, Shanmugam B, Swings J, Pasamontes L (2003) Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 53(Pt 1):231–238

    Article  CAS  Google Scholar 

  • Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68(4):445–455

    Article  CAS  Google Scholar 

  • Breuer M, Ernst H, Hauer B (2008) Method for the production of (4S)-4-hydroxy-3-methoxy-2,6,6-trimethyl-cyclohex-2-enon and derivatives thereof. International Patent WO2008055988

  • Calo P, Miguel T, Velázquez JB, Villa TG (1995) Mevalonic acid increases trans-astaxanthin and carotenoid biosynthesis in Phaffia rhodozyma. Biotechnol Lett 17(6):575–578

    Article  CAS  Google Scholar 

  • Cannizzaro C, Rhiel M, Marison I, von Stockar U (2003) On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng 83(6):668–680

    Article  CAS  Google Scholar 

  • Cannizzaro C, Christensen B, Nielsen J, von Stockar U (2004) Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography–mass spectrometry. Metab Eng 6(4):340–351

    Article  CAS  Google Scholar 

  • Chan HY, Ho KP (1999) Growth and carotenoid production by pH-stat cultures of Phaffia rhodozyma. Biotechnol Lett 21(11):953–958

    Article  CAS  Google Scholar 

  • Chumpolkulwong N, Kakizono T, Nagai S, Nishio N (1997) Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine. J Ferment Bioeng 83(5):429–434

    Article  CAS  Google Scholar 

  • Chun SB, Chin JE, Bai S, An G-H (1992) Strain improvement of Phaffia rhodozyma by protoplast fusion. FEMS Microbiol Lett 93(3):221–226

    Article  CAS  Google Scholar 

  • Cruz JM, Parajo JC (1998) Improved astaxanthin production by Xanthophyllomyces dendrorhous growing on enzymatic wood hydrolysates containing glucose and cellobiose. Food Chem 63(4):479–484

    Article  CAS  Google Scholar 

  • Cunningham FX Jr, Gantt E (2005) A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J 41(3):478–492

    Article  CAS  Google Scholar 

  • de la Fuente JL, Peiro E, Diez B, Marcos AT, Schleissner C, Rodriguez Saiz M, Rodriguez Otero C, Cabri W, Barredo JL (2005) Method of production of astaxanthin by fermenting selected strains of Xanthophyllomyces dendrorhous. United States Patent US20050124032A1

  • de la Fuente JL, Rodríguez-Sáiz M, Schleissner C, Díez B, Peiro E, Barredo JL (2010) High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol 148(2–3):144–146

    Article  CAS  Google Scholar 

  • Domínguez-Bocanegra A, Ponce-Noyola T, Torres-Muñoz J (2007) Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study. Appl Microbiol Biotechnol 75(4):783–791

    Article  CAS  Google Scholar 

  • Dong QL, Zhao XM, Ma HW, Xing XY, Sun NX (2006) Metabolic flux analysis of the two astaxanthin-producing microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the pure and mixed cultures. Biotechnol J 1(11):1283–1292

    Article  CAS  Google Scholar 

  • Ducrey Santopietro LM, Kula MR (1998) Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14(11):1007–1016

    Article  Google Scholar 

  • Echavarri-Erasun C, Johnson EA (2004) Stimulation of astaxanthin formation in the yeast Xanthophyllomyces dendrorhous by the fungus Epicoccum nigrum. FEMS Yeast Res 4(4–5):511–519

    Article  CAS  Google Scholar 

  • European Food Safety Authority (EFSA) (2010) Scientific opinion on modification of the terms of authorisation of a red carotenoid-rich bacterium Paracoccus carotinifaciens (Panaferd-AX) as feed additive for salmon and trout. EFSA Journal 8(1):1428–1436

    Google Scholar 

  • Fang TJ, Cheng Y-S (1993) Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions. J Ferment Bioeng 75(6):466–469

    Article  CAS  Google Scholar 

  • Florêncio JA, Soccol CR, Furlanetto LF, Bonfim TMB, Krieger N, Baron M, Fontana JD (1998) A factorial approach for a sugarcane juice-based low cost culture medium: increasing the astaxanthin production by the red yeast Phaffia rhodozyma. Bioprocess Biosyst Eng 19(3):161–164

    Google Scholar 

  • Flores-Cotera LB, Sánchez S (2001) Copper but not iron limitation increases astaxanthin production by Phaffia rhodozyma in a chemically defined medium. Biotechnol Lett 23(10):793–797

    Article  CAS  Google Scholar 

  • Flores-Cotera LB, Martin R, Sanchez S (2001) Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Appl Microbiol Biotechnol 55(3):341–347

    Article  CAS  Google Scholar 

  • Foss P, Renstrøm B, Liaaen-Jensen S (1987) Natural occurrence of enantiomeric and meso astaxanthin 7*-crustaceans including zooplankton. Comp Biochem Physiol B Biochem Mol Biol 86(2):313–314

    Article  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36(2):163–180

    Article  CAS  Google Scholar 

  • Frucht LE, Kanon S (2005) Israel grows red algae in the dessert to fight disease. Israel21c. http://www.israel21c.org/environment/israel-grows-red-algae-in-the-desert-to-fight-disease. Accessed 9 July 2010

  • Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57(14):3639–3645

    Article  CAS  Google Scholar 

  • Girard P, Falconnier B, Bricout J, Vladescu B (1994) β-Carotene producing mutants of Phaffia rhodozyma. Appl Microbiol Biotechnol 41(2):183–191

    Article  CAS  Google Scholar 

  • Golubev W (1995) Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 11(2):101–110

    Article  CAS  Google Scholar 

  • Grung M, D’Souza FML, Borowitzka M, Liaaen-Jensen S (1992) Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J Appl Phycol 4(2):165–171

    Article  CAS  Google Scholar 

  • Gu WL, An GH, Johnson EA (1997) Ethanol increases carotenoid production in Phaffia rhodozyma. J Ind Microbiol Biotechnol 19(2):114–117

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21(5):210–216

    Article  CAS  Google Scholar 

  • Harker M, Hirschberg J, Oren A (1998) Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int J Syst Bacteriol 48:543–548

    Google Scholar 

  • Hasunuma T, Miyazawa S, Yoshimura S, Shinzaki Y, Tomizawa K, Shindo K, Choi SK, Misawa N, Miyake C (2008) Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J 55(5):857–868

    Article  CAS  Google Scholar 

  • Hazen T (1899) The life history of Sphaerella lacustris. Mem Torrey Bot Club 6(3):211–247

    Google Scholar 

  • Hermosilla G, Martinez C, Retamales P, Leon R, Cifuentes V (2003) Genetic determination of ploidy level in Xanthophyllomyces dendrorhous. Antonie Leeuwenhoek 84(4):279–287

    Article  CAS  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46(2):185–196

    Article  CAS  Google Scholar 

  • Ho KP, Tam CY, Zhou B (1999) Growth and carotenoid production of Phaffia rhodozyma in fed-batch cultures with different feeding methods. Biotechnol Lett 21(2):175–178

    Article  CAS  Google Scholar 

  • Hoshino T, Ojima K, Setoguchi Y (1999) DNA sequences encoding enzymes involved in production of isoprenoids. European Patent EP0955363A2

  • Hoshino T, Ojima K, Setoguchi Y (2000) Astaxanthin synthase. European Patent EP1035206A3

  • Hoshino T, Setoguchi Y, Takagi Y (2008) Astaxanthin production using fed-batch process by Phaffia rhodozyma. United States Patent US7432076B2

  • Hu Z-C, Zheng Y-G, Wang Z, Shen Y-C (2005) Effect of sugar-feeding strategies on astaxanthin production by Xanthophyllomyces dendrorhous. World J Microbiol Biotechnol 21(5):771–775

    Article  CAS  Google Scholar 

  • Hu Z-C, Zheng Y-G, Wang Z, Shen Y-C (2006) pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme Microb Technol 39(4):586–590

    Article  CAS  Google Scholar 

  • Hu Z-C, Zheng YG, Wang Z, Shen YC (2007) Production of astaxanthin by Xanthophyllomyces dendrorhous ZJUT46 with fed-batch fermentation in 2.0 M3 fermentor. Food Technol Biotechnol 45(2):209–212

    CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69(3):443–449

    Article  CAS  Google Scholar 

  • Jacobson GK, Jolly SO, Sedmak JJ, Skatrud TJ, Wasileski JM (1999) Astaxanthin over-producing strains of Phaffia rhodozyma, methods for their cultivation, and their use in animal feeds. United States Patent US6015684

  • Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17(4):489–501

    Article  CAS  Google Scholar 

  • Johnson EA, An G-H (1991) Astaxanthin from microbial sources. Crit Rev Biotechnol 11(4):297–326

    Article  CAS  Google Scholar 

  • Johnson EA, Lewis MJ (1979) Astaxanthin formation by the yeast Phaffia rhodozyma. J Gen Microbiol 115(1):173–183

    CAS  Google Scholar 

  • Johnson EA, Schroeder A (1996) Biotechnology of astaxanthin production in Phaffia rhodozyma. In: Takeoka GR, Teranishi R, Williams PJ, Kobayashi A (eds) Biotechnology for improved foods and flavors. ACS Symposium, Series 637, American Chemical Society, Washington, DC, pp 39–50

  • Kajiwara S, Fraser PD, Kondo K, Misawa N (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324(Pt 2):421–426

    CAS  Google Scholar 

  • Kato F, Hino T, Nakaji A, Tanaka M, Koyama Y (1995) Carotenoid synthesis in Streptomyces setonii ISP5395 is induced by the gene crtS, whose product is similar to a sigma factor. Mol Gen Genet 247(3):387–390

    Article  CAS  Google Scholar 

  • Kesava SS, An G-H, Kim C-H, Rhee S-K, Choi E-S (1998) An industrial medium for improved production of carotenoids from a mutant strain of Phaffia rhodozyma. Bioprocess Biosyst Eng 19(3):165–170

    CAS  Google Scholar 

  • Kim S-J, Kim G-J, Park D-H, Ryu Y-W (2003) High-level production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1. J Microbiol Biotechnol 13(2):175–181

    CAS  Google Scholar 

  • Kim JH, Kang SW, Kim SW, Chang HI (2005) High-level production of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1 using statistical experimental designs. Biosci Biotechnol Biochem 69(9):1743–1748

    Article  CAS  Google Scholar 

  • Kim SK, Lee JH, Lee CH, Yoon YC (2007) Increased carotenoid production in Xanthophyllomyces dendrorhous G276 using plant extracts. J Microbiol 45(2):128–132

    CAS  Google Scholar 

  • Kitahara T (1984) Carotenoids in the Pacific salmon during the marine period. Comp Biochem Physiol B Biochem Mol Bio 78(4):859–862

    Article  Google Scholar 

  • Kusdiyantini E, Gaudin P, Goma G, Blanc PJ (1998) Growth kinetics and astaxanthin production of Phaffia rhodozyma on glycerol as a carbon source during batch fermentation. Biotechnol Lett 20(10):929–934

    Article  CAS  Google Scholar 

  • Lee JH, Kim YT (2006) Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370:86–95

    Article  CAS  Google Scholar 

  • Lewis MJ, Ragot N, Berlant MC, Miranda M (1990) Selection of astaxanthin-overproducing mutants of Phaffia rhodozyma with beta-ionone. Appl Environ Microbiol 56(9):2944–2945

    CAS  Google Scholar 

  • Liu YS, Wu JY (2006) Use of n-hexadecane as an oxygen vector to improve Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. J Appl Microbiol 101(5):1033–1038

    Article  CAS  Google Scholar 

  • Liu YS, Wu JY (2007a) Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochem Eng J 36(2):182–189

    Article  CAS  Google Scholar 

  • Liu YS, Wu JY (2007b) Perfusion culture process plus H2O2 stimulation for efficient astaxanthin production by Xanthophyllomyces dendrorhous. Biotechnol Bioeng 97(3):568–573

    Article  CAS  Google Scholar 

  • Liu YS, Wu JY (2008) Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production. Biotechnol Bioeng 101(5):996–1004

    Article  CAS  Google Scholar 

  • Liu YS, Wu JY, Ho KP (2006) Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem Eng J 27(3):331–335

    Article  CAS  Google Scholar 

  • Liu ZQ, Zhang JF, Zheng YG, Shen YC (2008) Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation. J Appl Microbiol 104(3):861–872

    Article  CAS  Google Scholar 

  • Lorenz R, Cysewski G (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18(4):160–167

    Article  CAS  Google Scholar 

  • Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18:888–892

    Article  CAS  Google Scholar 

  • Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51(4):431–438

    Article  CAS  Google Scholar 

  • Martín JF, Gudina E, Barredo JL (2008) Conversion of beta-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase–ketolase protein? Microb Cell Fact 7:3

    Article  CAS  Google Scholar 

  • Masamoto K, Misawa N, Kaneko T, Kikuno R, Toh H (1998) ß-Carotene hydroxylase gene from the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 39(5):560–564

    CAS  Google Scholar 

  • Matsuno T (2001) Aquatic animal carotenoids. Fish Sci 67(5):771–783

    Article  CAS  Google Scholar 

  • Meyer PS, du Preez JC (1993) Effect of acetic acid on astaxanthin production by Phaffia rhodozyma. Biotechnol Lett 15(9):919–924

    Article  CAS  Google Scholar 

  • Meyer PS, du Preez JC (1994a) Astaxanthin production by a Phaffia rhodozyma mutant on grape juice. World J Microbiol Biotechnol 10(2):178–183

    Article  CAS  Google Scholar 

  • Meyer PS, du Preez JC (1994b) Effect of culture conditions on astaxanthin production by a mutant of Phaffia rhodozyma in batch and chemostat culture. Appl Biochem Biotechnol 40(6):780–785

    CAS  Google Scholar 

  • Meyer PS, du Preez JC, Kilian SG (1993) Selection and evaluation of astaxanthin-overproducing mutants of Phaffia rhodozyma. World J Microbiol Biotechnol 9:514–520

    Article  CAS  Google Scholar 

  • Meyer PS, du Preez JC, van Dyk MS (1994) The effect of monoterpenes on astaxanthin production by a mutant of Phaffia rhodozyma. Biotechnol Lett 16(2):125–128

    Article  CAS  Google Scholar 

  • Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63(1):141–146

    Article  CAS  Google Scholar 

  • Miller M, Yoneyama M, Soneda M (1976) Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int J Syst Bacteriol 26(2):286–291

    Article  Google Scholar 

  • Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998a) Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64(4):1226–1229

    CAS  Google Scholar 

  • Miura Y, Kondo K, Shimada H, Saito T, Nakamura K, Misawa N (1998b) Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng 58(2–3):306–308

    Article  CAS  Google Scholar 

  • Moriel DG, Chociai MB, Machado IMP, Fontana JD, Bonfim TMB (2005) Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process. Braz Arch Biol Technol 48(3):397–401

    Article  Google Scholar 

  • Morris WL, Ducreux LJ, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8(3):253–263

    Article  CAS  Google Scholar 

  • Nakajima Y, Inokuchi Y, Shimatawa M, Otsubo K, Ishibashi T, Hara H (2008) Astaxanthin, a dietary carotenoid, protects retinal cells against oxidative stress in-vitro and in mice in-vivo. J Pharm Pharmacol 60(10):1365–1374

    Article  CAS  Google Scholar 

  • Naturxan (2010) http://www.naturxan.com/. Accessed 23 August 2010

  • Ni H, Chen QH, Ruan H, Yang YF, Li LJ, Wu GB, Hu Y, He GQ (2007) Studies on optimization of nitrogen sources for astaxanthin production by Phaffia rhodozyma. J Zhejiang Univ Sci B 8(5):365–370

    Article  CAS  Google Scholar 

  • Niklitschek M, Alcaino J, Barahona S, Sepulveda D, Lozano C, Carmona M, Marcoleta A, Martinez C, Lodato P, Baeza M, Cifuentes V (2008) Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous. Biol Res 41(1):93–108

    Article  Google Scholar 

  • Ojima K, Breitenbach J, Visser H, Setoguchi Y, Tabata K, Hoshino T, van den Berg J, Sandmann G (2006) Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol Genet Genomics 275(2):148–158

    Article  CAS  Google Scholar 

  • Okagbue RN, Lewis MJ (1984) Use of alfalfa residual juice as a substrate for propagation of the red yeast Phaffia rhodozyma. Appl Microbiol Biotechnol 20(1):33–39

    Article  CAS  Google Scholar 

  • Palágyi Z, Ferenczy L, Vágvölgyi C (2001) Carbon-source assimilation pattern of the astaxanthin-producing yeast Phaffia rhodozyma. World J Microbiol Biotechnol 17(1):95–97

    Article  Google Scholar 

  • Parajo JC, Santos VV, Vazquez M (1998) Production of carotenoids by Phaffia rhodozyma growing on media made from hemicellulosic hydrolysates of Eucalyptus globulus wood. Biotechnol Bioeng 59(4):501–506

    Article  CAS  Google Scholar 

  • Peng F, Li A (2008) Optimization of carotenoid fermentation medium of Phaffia rhodozyma by BP neural network and genetic algorithm. Ying Yong Yu Huan Jing Sheng Wu Xue Bao 14(6):834–837

    CAS  Google Scholar 

  • Phaff H, Miller M, Yoneyama M, Soneda M (1972) A comparative study of the yeast florae associated with trees on the Japanese islands and in the west coast of North America. In: Gyozo T (ed) Fourth International Fermentation Symposium proceedings: fermentation technology today. Society of Fermentation Technology, Osaka, pp 759–774

    Google Scholar 

  • Ramírez J, Gutierrez H, Gschaedler A (2001) Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J Biotechnol 88(3):259–268

    Article  Google Scholar 

  • Ramírez J, Obledo N, Arellano M, Herrera E (2006) Astaxanthin production by Phaffia rhodozyma in a fed-batch culture using a low cost medium feeding. eGnosis 4:1–9

    Google Scholar 

  • Rayton S, Rayton J, Foley L, Jones PW (2006) Ketocarotenoids from Adonis palaestina. International Patent WO2006119346

  • Reynders MB, Rawlings DE, Harrison STL (1996) Studies on the growth, modelling and pigment production by the yeast Phaffia rhodozyma during fed-batch cultivation. Biotechnol Lett 18(6):649–654

    Article  CAS  Google Scholar 

  • Reynders MB, Rawlings DE, Harrison STL (1997) Demonstration of the Crabtree effect in Phaffia rhodozyma during continuous and fed-batch cultivation. Biotechnol Lett 19(6):549–552

    Article  CAS  Google Scholar 

  • Rodriguez-Saiz M, Godio RP, Alvarez V, de la Fuente JL, Martin JF, Barredo JL (2009) The NADP-dependent glutamate dehydrogenase gene from the astaxanthin producer Xanthophyllomyces dendrorhous: use of its promoter for controlled gene expression. Mol Biotechnol 41(2):165–172

    Article  CAS  Google Scholar 

  • Rodriguez-Saiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol. doi:10.1007/s00253-010-2814-x, Epub ahead of print

    Google Scholar 

  • Rüttimann A (1999) Dienolether condensations—a powerful tool in carotenoid synthesis. Pure Appl Chem 71(12):2285–2293

    Article  Google Scholar 

  • Sandmann G, Misawa N (2002) Fungal carotenoids. In: Osiewacz HD (ed) The Mycota X; industrial application. Springer, Berlin, pp 247–262

    Google Scholar 

  • Sauer GM, Flachmann R, Schopfer CR, Leps M, Bridg-Giannakopoulos H (2008a) New ketolases for the production of ketokarotenoids in Tagetes. International Patent WO2008058946

  • Sauer GM, Flachmann R, Schopfer CR, Leps M, Bridg-Giannakopoulos H, Winner B, Eisenreich R (2008b) Plastid–lipid-associated protein promoters for the production of ketokarotenoids in Tagetes. International Patent WO2008058948

  • Schloemer GC, Davis JL (2001) Preparation of astaxanthin. International Patent WO0181301

  • Schmidhauser TJ, Lauter FR, Schumacher M, Zhou W, Russo VE, Yanofsky C (1994) Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem 269(16):12060–12066

    CAS  Google Scholar 

  • Schroeder WA, Johnson EA (1993) Antioxidant role of carotenoids in Phaffia rhodozyma. J Gen Microbiol 139(5):907–912

    CAS  Google Scholar 

  • Schroeder WA, Johnson EA (1995a) Carotenoids protect Phaffia rhodozyma against singlet oxygen damage. J Ind Microbiol Biotechnol 14(6):502–507

    CAS  Google Scholar 

  • Schroeder WA, Johnson EA (1995b) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270(31):18374–18379

    Article  CAS  Google Scholar 

  • Seybold A, Goodwin TW (1959) Occurrence of astaxanthin in the flower petals of Adonis annua L. Nature 184(Suppl 22):1714–1715

    Article  CAS  Google Scholar 

  • Sharpe PL, Ye RW, Zhu QQ (2008) Carotenoid production in a recombinant oleaginous yeast. International Patent WO2008073367

  • Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64(7):2676–2680

    CAS  Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72(12):7477–7484

    Article  CAS  Google Scholar 

  • Sun N, Lee S, Song KB (2004) Characterization of a carotenoid-hyperproducing yeast mutant isolated by low-dose gamma irradiation. Int J Food Microbiol 94(3):263–267

    Article  CAS  Google Scholar 

  • Tischer J (1944) Über die Carotinoide von Hämatococcus pluvialis. III. (Carotinoide der Süßwasseralgen. IX. Teil). Hoppe Seylers Z Physiol Chem 281(5–6):143–155

    CAS  Google Scholar 

  • Trueheart J, Bailey RB, Doten R, Madden KT, Mayorga M, Dueppen D, Dunn JG (2009) Production of carotenoids in oleaginous yeast and fungi. International Patent WO2009126890

  • Tsubokura A, Yoneda H, Mizuta H (1999) Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 49:277–282

    Article  CAS  Google Scholar 

  • Turujman SA, Wamer WG, Wei RR, Albert RH (1997) Rapid liquid chromatographic method to distinguish wild salmon from aquacultured salmon fed synthetic astaxanthin. J AOAC Int 80(3):622–632

    CAS  Google Scholar 

  • Ukibe K, Hashida K, Yoshida N, Takagi H (2009) Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75(22):7205–7211

    Article  CAS  Google Scholar 

  • van den Brink HM, van Gorcom RFM, van den Hondel CAMJJ, Punt PJ (1998) Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol 23(1):1–17

    Article  Google Scholar 

  • Vázquez M (2001) Effect of the light on carotenoid profiles of Xanthophyllomyces dendrorhous strains (formerly Phaffia rhodozyma). Food Technol Biotechnol 39(2):123–128

    Google Scholar 

  • Vázquez M, Martin AM (1998) Optimization of Phaffia rhodozyma continuous culture through response surface methodology. Biotechnol Bioeng 57(3):314–320

    Article  Google Scholar 

  • Vázquez M, Santos V (1998) 3-Hydroxy-3′, 4′-didehydro-beta-psi-caroten-4-one (HDCO) from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) cultivated on xylose media. Biotechnol Lett 20(2):181–182

    Article  Google Scholar 

  • Verdoes JC, Krubasik KP, Sandmann G, van Ooyen AJ (1999a) Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 262(3):453–461

    Article  CAS  Google Scholar 

  • Verdoes JC, Misawa N, van Ooyen AJJ (1999b) Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol Bioeng 63(6):750–755

    Article  CAS  Google Scholar 

  • Verdoes JC, Sandmann G, Visser H, Diaz M, van Mossel M, van Ooyen AJ (2003) Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Appl Environ Microbiol 69(7):3728–3738

    Article  CAS  Google Scholar 

  • Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73(13):4342–4350

    Article  CAS  Google Scholar 

  • Visser H, van Ooyen AJ, Verdoes JC (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4(3):221–231

    Article  CAS  Google Scholar 

  • Visser H, Sandmann G, Verdoes JC (2005) Xanthophylls in fungi: metabolic engineering of the astaxanthin biosynthetic pathway in Xantophyllomyces dendrorhous. Methods in biotechnology: microbial processes and products. Humana, Totowa

    Google Scholar 

  • Wang W, Yu L (2009) Effects of oxygen supply on growth and carotenoids accumulation by Xanthophyllomyces dendrorhous. Z Naturforsch C 64(11–12):853–858

    CAS  Google Scholar 

  • Wang W, Yu L, Zhou P (2006) Effects of different fungal elicitors on growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous. Bioresour Technol 97(1):26–31

    Article  CAS  Google Scholar 

  • Wery J, Gutker D, Renniers AC, Verdoes JC, Van Ooyen AJ (1997) High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma. Gene 184:89–97

    Article  CAS  Google Scholar 

  • Wery J, Verdoes JC, Van Ooyen AJJ (1998) Efficient transformation of the astaxanthin-producing yeast Phaffia rhodozyma. Biotechnol Tech 12:399–405

    Article  CAS  Google Scholar 

  • Widmer E, Zell R, Broger EA, Crameri Y, Wagner HP, Dinkel J, Schlageter M, Lukac T (1981) Technische Verfahren zur Synthese von Carotenoiden und verwandten Verbindungen aus 6-oxo-isophoron. II. Ein neues Konzept für die Synthese von (3RS, 3′RS)-astaxanthin. Helv Chim Acta 64:2436–2446

    Article  CAS  Google Scholar 

  • Yamane Y, Higashida K, Nakashimada Y, Kakizono T, Nishio N (1997a) Astaxanthin production by Phaffia rhodozyma enhanced in fed-batch culture with glucose and ethanol feeding. Biotechnol Lett 19(11):1109–1111

    Article  CAS  Google Scholar 

  • Yamane Y, Higashida K, Nakashimada Y, Kakizono T, Nishio N (1997b) Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Appl Environ Microbiol 63(11):4471–4478

    CAS  Google Scholar 

  • Yokoyama A, Izumida H, Miki W (1994) Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci Biotechnol Biochem 58:1842–1844

    Article  CAS  Google Scholar 

  • Zheng YG, Hu ZC, Wang Z, Shen YC (2006) Large-scale production of astaxanthin by Xanthophyllomyces dendrorhous. Food Bioprod Process 84(2):164–166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project leading to this paper is funded by the Federal Ministry of Education and Research (BMBF) (FKZ 0315327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Schrader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, I., Schewe, H., Gassel, S. et al. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous . Appl Microbiol Biotechnol 89, 555–571 (2011). https://doi.org/10.1007/s00253-010-2976-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2976-6

Keywords

Navigation