Skip to main content

Advertisement

Log in

Hydrolysis of organophosphorus compounds by microbial enzymes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

There are classes of microbial enzymes that have the ability to degrade harmful organophosphorus (OP) compounds that are present in some pesticides and nerve agents. To date, the most studied and potentially important OP-degrading enzymes are organophosphorus hydrolase (OPH) and organophosphorus acid anhydrolase (OPAA), which have both been characterized from a number of organisms. Here we provide an update of what is experimentally known about OPH and OPAA to include their structures, substrate specificity, and catalytic properties. Current and future potential applications of these enzymes in the hydrolysis of OP compounds are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RS, Durst HD, Landis WG (1988) Organofluorophosphate-hydrolyzing activity in an estuarine clam, Rangia cuneata. Comp Biochem Physiol C 91:575–578

    Article  CAS  Google Scholar 

  • Attaway H, Nelson JO, Baya AM, Voll MJ, White WE, Grimes DJ, Colwell RR (1987) Bacterial detoxification of diisopropyl fluorophosphate. Appl Environ Microbiol 53:1685–1689

    CAS  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM, Holden HM (1994) Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry 33:15001–15007

    Article  CAS  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM, Holden HM (1995) Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry 34:7973–7978

    Article  CAS  Google Scholar 

  • Benning MM, Shim H, Raushel FM, Holden HM (2001) High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry 40:2712–2722

    Article  CAS  Google Scholar 

  • Bird SB, Sutherland TD, Gresham C, Oakeshott J, Scott C, Eddleston M (2008) OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticides. Toxicology 247:88–92

    Article  CAS  Google Scholar 

  • Caldwell SR, Raushel FM (1991a) Detoxification of organophosphate pesticides using a nylon based immobilized phosphotriesterase from Pseudomonas diminuta. Appl Biochem Biotechnol 31:59–73

    Article  CAS  Google Scholar 

  • Caldwell SR, Raushel FM (1991b) Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta. Biotechnol Bioeng 37:103–109

    Article  CAS  Google Scholar 

  • Chen W, Mulchandani A (1998) The use of live biocatalysts for pesticide detoxification. Trends Biotechnol 16:71–76

    Article  CAS  Google Scholar 

  • Chen W, Richins RD, Mulchandani P, Kaneva I, Mulchandani A (2000) Biodegradation of organophosphorus nerve agents by surface expressed organophosphorus hydrolase. In: Zwanenburg B, Mikolajczyk M, Kielbasinski P (eds) Enzymes in action green solutions for chemical problems, vol 33. Kluwer Academic, Dordrecht, pp 211–221

    Google Scholar 

  • Cheng TC, DeFrank JJ (2000) Hydrolysis of Organophosphorus Compounds by Bacterial Prolidases. In: Zwanenburg B, Mikolajczyk M, Kielbasinski P (eds) Enzymes in action green solutions for chemical problems, vol 33. Kluwer Academic, Dordrecht, pp 243–261

    Google Scholar 

  • Cheng TC, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140

    CAS  Google Scholar 

  • Cheng TC, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62:1636–1641

    CAS  Google Scholar 

  • Cheng T, Liu L, Wang B, Wu J, DeFrank JJ, Anderson DM, Rastogi VK, Hamilton AB (1997) Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzyme from Alteromonas haloplanktis. J Ind Microbiol Biotechnol 18:49–55

    Article  CAS  Google Scholar 

  • Cheng TC, Rastogi VK, DeFrank JJ, Sawiris GP (1998) G-type nerve agent decontamination by Alteromonas prolidase. Ann N Y Acad Sci 864:253–258

    Article  CAS  Google Scholar 

  • Cheng TC, DeFrank JJ, Rastogi VK (1999) Alteromonas prolidase for organophosphorus G-agent decontamination. Chem Biol Interact 119–120:455–462

    Article  Google Scholar 

  • Chungjatupornchai W, Fa-Aroonsawat S (2008) Biodegradation of organophosphate pesticide using recombinant Cyanobacteria with surface- and intracellular-expressed organophosphorus hydrolase. J Microbiol Biotechnol 18:946–951

    CAS  Google Scholar 

  • Defense Threat Reduction Agency (2008) Joint Science and Technology Office for Chemical and Biological Defense FY 10/11-new initiatives. Defense Threat Reduction Agency, Fort Belvoir, pp 1–53

  • DeFrank JJ, White WE (2002) Phosphofluoridates: Biological Activity and Biodegradation. In: Neilson AH (ed) The handbook of environmental chemistry organofluorines, vol 3N. Springer, Berlin, pp 295–343

    Google Scholar 

  • DeFrank JJ, Beaudry WT, Cheng TC, Harvey SP, Stroup AN, Szafraniec LL (1993) Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity. Chem Biol Interact 87:141–148

    Article  CAS  Google Scholar 

  • DeFrank JJ, Guelta M, Harvey S, Fry IJ, Earley JP, Lupton FS (2000) Biodegradation of hydrolyzed chemical warfare agents by bacterial consortia. In: Zwanenburg B, Mikolajczyk M, Kielbasinski P (eds) Enzymes in action green solutions for chemical problems, vol 33. Kluwer Academic, Dordrecht, pp 193–209

    Google Scholar 

  • Ditargiani RC, Chandrasekaran L, Belinskaya T, Saxena A (2010) In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity. Chem Biol Interact 187:349–354

    Google Scholar 

  • Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264:19659–19665

    CAS  Google Scholar 

  • Dumas DP, Durst HD, Landis WG, Raushel FM, Wild JR (1990) Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Arch Biochem Biophys 277:155–159

    Article  CAS  Google Scholar 

  • Ghanem E, Raushel FM (2005) Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol Appl Pharmacol 207:459–470

    Article  Google Scholar 

  • Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW (1998) Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180:4781–4789

    CAS  Google Scholar 

  • Graham SC, Lilley PE, Lee M, Schaeffer PM, Kralicek AV, Dixon NE, Guss JM (2006) Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: insights into substrate recognition and the mechanism of catalysis. Biochemistry 45:964–975

    Article  CAS  Google Scholar 

  • Grimsley JK, Disioudi BD, Holton TR, Sacchettini JC, Wild JR (2000) Active site modifications of organophosphorus hydrolase for improved detoxification of organophosphorus neurotoxins. In: Zwanenburg B, Mikolajczyk M, Kielbasinski P (eds) Enzymes in action green solutions for chemical problems, vol 33. Kluwer Academic, Dordrecht, pp 223–242

    Google Scholar 

  • Grunden AM, Comfort DA, Malotky EL, Kelly RM (2004) Expression of Extremophilic Proteins. In: Baneyx F (ed) Expression technologies: current status and future trends. Horizon Scientific, Norfolk, pp 1–84

    Google Scholar 

  • Holm L, Sander C (1997) An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins 28:72–82

    Article  CAS  Google Scholar 

  • Hoskin FC, Roush AH (1982) Hydrolysis of nerve gas by squid-type diisopropyl phosphorofluoridate hydrolyzing enzyme on agarose resin. Science 215:1255–1257

    Article  CAS  Google Scholar 

  • Jaenicke R, Bohm G (1998) The stability of proteins in extreme environments. Curr Opin Struct Biol 8:738–748

    Article  CAS  Google Scholar 

  • Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Q 43:139–144

    CAS  Google Scholar 

  • Karns J, Haperman C, Mulbry W, Ahrens E, Shelton D (1998) Biotechnology for the elimination of agrochemical wastes. Hort Sci 33:626–631

    CAS  Google Scholar 

  • Lai K, Stolowich NJ, Wild JR (1995) Characterization of P–S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase. Arch Biochem Biophys 318:59–64

    Article  CAS  Google Scholar 

  • Lai K, Grimsley JK, Kuhlmann BD, Scapozza L, Harvey SP, DeFrank JJ, Kolalowski JE, Wild JR (1996) Rational enzyme design: computer modeling and site-directed mutagenesis for the modification of catalytic specificity in organophosphorus hydrolase. Chimia 50:430–431

    CAS  Google Scholar 

  • Landis WG, Haley DM, Haley MV, Johnson DW, Durst HD, Savage RE Jr (1987) Discovery of multiple organofluorophosphate hydrolyzing activities in the protozoan Tetrahymena thermophila. J Appl Toxicol 7:35–41

    Article  CAS  Google Scholar 

  • LeJeune KE, Russell AJ (1999) Biocatalytic nerve agent detoxification in fire fighting foams. Biotechnol Bioeng 62:659–665

    Article  CAS  Google Scholar 

  • LeJeune KE, Wild JR, Russell AJ (1998) Nerve agents degraded by enzymatic foams. Nature 395:27–28

    Article  CAS  Google Scholar 

  • Little JS, Broomfield CA, Fox-Talbot MK, Boucher LJ, MacIver B, Lenz DE (1989) Partial characterization of an enzyme that hydrolyzes sarin, soman, tabun, and diisopropyl phosphorofluoridate (DFP). Biochem Pharmacol 38:23–29

    Article  CAS  Google Scholar 

  • Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4608

    Article  CAS  Google Scholar 

  • Lupi A, Della Torre S, Campari E, Tenni R, Cetta G, Rossi A, Forlino A (2006) Human recombinant prolidase from eukaryotic and prokaryotic sources. Expression, purification, characterization and long-term stability studies. Febs J 273:5466–5478

    Google Scholar 

  • Mazur A (1946) An enzyme in animal tissues capable of hydrolyzing the phosphorus–fluorine bond of alkyl fluorophosphates. J Biol Chem 164:271–289

    CAS  Google Scholar 

  • Merone L, Mandrich L, Rossi M, Manco G (2005) A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9:297–305

    Article  CAS  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    CAS  Google Scholar 

  • Mulchandani A, Mulchandani P, Kaneva I, Chen W (1998a) Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. Anal Chem 70:4140–4145

    Article  CAS  Google Scholar 

  • Mulchandani A, Kaneva I, Chen W (1998b) Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber-optic microbial biosensor. Anal Chem 70:5042–5046

    Article  CAS  Google Scholar 

  • Mulchandani A, Kaneva I, Chen W (1999) Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 63:216–223

    Article  CAS  Google Scholar 

  • Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  Google Scholar 

  • Omburo GA, Kuo JM, Mullins LS, Raushel FM (1992) Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem 267:13278–13283

    CAS  Google Scholar 

  • Omburo GA, Mullins LS, Raushel FM (1993) Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 113Cd NMR spectroscopy. Biochemistry 32:9148–9155

    Article  CAS  Google Scholar 

  • Pei L, Petrikovics I, Way JL (1995) Antagonism of the lethal effects of paraoxon by carrier erythrocytes containing phosphotriesterase. Fundam Appl Toxicol 28:209–214

    Article  CAS  Google Scholar 

  • Petrikovics I, Hong K, Omburo G, Hu QZ, Pei L, McGuinn WD, Sylvester D, Tamulinas C, Papahadjopoulos D, Jaszberenyi JC, Way JL (1999) Antagonism of paraoxon intoxication by recombinant phosphotriesterase encapsulated within sterically stabilized liposomes. Toxicol Appl Pharmacol 156:56–63

    Article  CAS  Google Scholar 

  • Porzio E, Merone L, Mandrich L, Rossi M, Manco G (2007) A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Biochimie 89:625–636

    Article  CAS  Google Scholar 

  • Rainina EI, Efremenco EN, Varfolomeyev SD, Simonian AL, Wild JR (1996) The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins. Biosens Bioelectron 11:991–1000

    Article  CAS  Google Scholar 

  • Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 5:288–295

    Article  CAS  Google Scholar 

  • Rastogi VK, DeFrank JJ, Cheng TC, Wild JR (1997) Enzymatic hydrolysis of Russian-VX by organophosphorus hydrolase. Biochem Biophys Res Commun 241:294–296

    Google Scholar 

  • Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987

    Article  CAS  Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249

    CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875

    Article  CAS  Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76:318–324

    Article  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  Google Scholar 

  • Takayama K, Suye S, Kuroda K, Ueda M, Kitaguchi T, Tsuchiyama K, Fukuda T, Chen W, Mulchandani A (2006) Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol Prog 22:939–943

    Article  CAS  Google Scholar 

  • Theriot CM, Tove SR, Grunden AM (2010a) Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii. Appl Microbiol Biotechnol 86:177–188

    Article  CAS  Google Scholar 

  • Theriot CM, Du X, Tove SR, Grunden AM (2010b) Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures. Appl Microbiol Biotechnol 87:1715–1726

    Article  CAS  Google Scholar 

  • Tuovinen K, Kaliste-Korhonen E, Raushel FM, Hanninen O (1994) Phosphotriesterase—a promising candidate for use in detoxification of organophosphates. Fundam Appl Toxicol 23:578–584

    Article  CAS  Google Scholar 

  • Tuovinen K, Kaliste-Korhonen E, Raushel FM, Hanninen O (1996) Protection of organophosphate-inactivated esterases with phosphotriesterase. Fundam Appl Toxicol 31:210–217

    Article  CAS  Google Scholar 

  • Vanhooke JL, Benning MM, Raushel FM, Holden HM (1996) Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemistry 35:6020–6025

    Article  CAS  Google Scholar 

  • Vyas NK, Nickitenko A, Rastogi VK, Shah SS, Quiocho FA (2010) Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase. Biochemistry 49:547–559

    Article  CAS  Google Scholar 

  • Wang AA, Mulchandani A, Chen W (2002) Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. Appl Environ Microbiol 68:1684–1689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sherry Tove for her helpful comments on the manuscript. We also thank Dr. Joseph DeFrank and Saumil Shah from the US Army, Edgewood Chemical Biological Center, for helpful discussion on the use of OP compound-degrading enzymes for CWA decontamination. Support for some of the studies described in this review was provided by the Army Research Office (contract number 44258LSSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Grunden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theriot, C.M., Grunden, A.M. Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89, 35–43 (2011). https://doi.org/10.1007/s00253-010-2807-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2807-9

Keywords

Navigation