Skip to main content
Log in

Biotechnological production and applications of N-acetyl-d-neuraminic acid: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

N-Acetyl-d-neuraminic acid (Neu5Ac) and its derivates are a very important group of biomolecules because these sugars occupy the terminal positions in numerous macromolecules, such as the glycans of glycoproteins, and are involved in many biological and pathological phenomena. The synthesis and applications of Neu5Ac are attracting much interest due to the potential applications of this compound in the pharmaceutical industry, such as in the synthesis of the anti-flu drug zanamivir. In this review article, we discuss existing knowledge on the biotechnological production and applications of Neu5Ac and also propose some guidelines for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bülow L, Ljungcrantz P, Mosbach K (1985) Preparation of a soluble bifunctional enzyme by gene fusion. Nat Biotechnol 3:821–823

    Article  Google Scholar 

  • Blayer S, Woodley JM, Dawson MJ, Lilly MD (1999) Alkaline biocatalysis for the direct synthesis of N-acetyl-d-neuraminic acid (Neu5Ac) from N-acetyl-d-glucosamine (GlcNAc). Biotechnol Bioeng 66:131–136

    Article  CAS  Google Scholar 

  • Chen RR (2007) Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol 74:730–738

    Article  CAS  Google Scholar 

  • Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176

    Article  CAS  Google Scholar 

  • Comb DG, Roseman S (1960) The sialic acids. I. The structure and enzymatic synthesis of N-acetylneuraminic acid. J Biol Chem 235:2529–2537

    CAS  Google Scholar 

  • Cornforth JW, Firth ME, Gottschalk A (1958) The synthesis of N-acetylneuraminic acid. Biochem J 68:57–61

    CAS  Google Scholar 

  • Cretich M, Chiari M, Carrea G (2001) Stereoselective synthesis of (S)-(+)-naproxen catalyzed by carboxyl esterase in a multicompartment electrolyzer. J Biochem Biophys Meth 48:247–256

    Article  CAS  Google Scholar 

  • Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Kehrl JH, Kelm S, Le Douarin N, Powell L, Roder J, Schnaar RL, Sgroi DC, Stamenkovic K, Schauer R, Schachner M, van den Berg TK, van der Merwe PA, Watt SM, Varki A (1998) Siglecs: a family of sialic-acid binding lectins. Glycobiology 8:v–vi

    CAS  Google Scholar 

  • Cross AS, Wright DG, Gomatos P, Stamatos N (1997) Use of sialic acid or antibodies to sialidase as anti-infectious agents and anti-inflammatory agents Patent US: 5631283

  • Danishefsky SJ, DeNinno MP, Chen SH (1988) Stereoselective total syntheses of the naturally occurring enantiomers of N-acetylneuraminic acid and 3-deoxy-d-manno-2-octulosonic acid: a new and atereospecific approach to sialo and 3-deoxy-d-manno-2-octulosonic acid conjugates. J Am Chem Soc 110:3929–3940

    Article  CAS  Google Scholar 

  • Deninno MP (1991) The synthesis and glycosidation of N-acetylneuraminic acid. Synthesis 8:583–593

    Article  Google Scholar 

  • Dreitlein WB, Maratos J, Brocavich J (2001) Zanamivir and oseltamivir: two new options for the treatment and prevention of influenza. Clin Ther 23:327–355

    Article  CAS  Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    Article  CAS  Google Scholar 

  • Funegard U, Franzen L, Ericson T, Henriksson R (1994) Parotid saliva composition during and after irradiation of head and neck cancer. Eur J Cancer B Oral Oncol 30B:230–233

    Article  CAS  Google Scholar 

  • Furuhata K (2004) Chemistry of N-acetylneuraminic acid (Neu5Ac). Trends Glycosci Glycotechnol 16:143–169

    CAS  Google Scholar 

  • Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O (2006) Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols. Angew Chem 45:5677–5681

    Article  Google Scholar 

  • Holland HL (1998) Microbial transformations. Curr Opin Chem Biol 2:77–84

    Article  CAS  Google Scholar 

  • Hsu CC, Hong Z, Wada M, Franke D, Wong CH (2005) Directed evolution of d-sialic acid aldolase to l-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase. Proc Natl Acad Sci USA 102:9122–9126

    Article  CAS  Google Scholar 

  • Hu S, Chen J, Yang Z, Shao L, Bai H, Luo J, Jiang W, Yang Y (2010) Coupled bioconversion for preparation of N-acetyl-d: -neuraminic acid using immobilized N-acetyl-d: -glucosamine-2-epimerase and N-acetyl-d: -neuraminic acid lyase. Appl Microbiol Biotechnol 85:1383–1391

    Article  CAS  Google Scholar 

  • Ishige T, Honda K, Shimizu S (2005) Whole organism biocatalysis. Curr Opin Chem Biol 9:174–180

    Article  CAS  Google Scholar 

  • Joerger AC, Mayer S, Fersht AR (2003) Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Proc Natl Acad Sci USA 100:5694–5699

    Article  CAS  Google Scholar 

  • Juneja LR, Koketsu M, Nishimoto K, Kim M, Yamamoto T, Itoh T (1991) Large-scale preparation of sialic acid from chalaza and egg-yolk membrane. Carbohydr Res 214:179–186

    Article  CAS  Google Scholar 

  • Kawai N, Ikematsu H, Iwaki N, Maeda T, Kawashima T, Hirotsu N, Kashiwagi S (2009) Comparison of the effectiveness of zanamivir and oseltamivir against influenza A/H1N1, A/H3N2, and B. Clin Infect Dis 48:996–997

    Article  Google Scholar 

  • Kelm S, Schauer R (1997) Sialic acids in molecular and cellular interactions. Int Rev Cytol 175:137–240

    Article  CAS  Google Scholar 

  • Kelm S, Schauer R, Crocker PR (1996) The sialoadhesins—a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J 13:913–926

    Article  CAS  Google Scholar 

  • Kijima-Suda I, Miyamoto Y, Toyoshima S, Itoh M, Osawa T (1986) Inhibition of experimental pulmonary metastasis of mouse colon adenocarcinoma 26 sublines by a sialic acid:nucleoside conjugate having sialyltransferase inhibiting activity. Cancer Res 46:858–862

    CAS  Google Scholar 

  • Kim MJ, Hennen WJ, Sweers HM, Wong CH (1988) Enzymes in carbohydrate synthesis—N-acetylneuraminic acid aldolase catalyzed-reactions and preparation of N-acetyl-2-deoxy-d-neuraminic acid-derivatives. J Am Chem Soc 110:6481–6486

    Article  CAS  Google Scholar 

  • Koketsu M, Juneja LR, Kawanami H, Kim M, Yamamoto T (1992) Preparation of N-acetylneuraminic acid from delipidated egg yolk. Glycoconj J 9:70–74

    Article  CAS  Google Scholar 

  • Kragl U, Gygax D, Ghisalba O, Wandrey C (1991) Enzymatic 2-step synthesis of N-acetylneuraminic acid in the enzyme membrane reactor. Angew Chem 30:827–828

    Article  Google Scholar 

  • Lee JO, Yi JK, Lee SG, Takahashi S, Kim BG (2004) Production of N-acetylneuraminic acid from N-acetylglucosamine and pyruvate using recombinant human renin binding protein and sialic acid aldolase in one pot. Enzyme Microb Technol 35:121–125

    Article  CAS  Google Scholar 

  • Lee YC, Chien HC, Hsu WH (2007) Production of N-acetyl-d-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase and Escherichia coli N-acetyl-d-neuraminic acid lyase. J Biotechnol 129:453–460

    Article  CAS  Google Scholar 

  • Lin CH, Sugai T, Halcomb RL, Ichikawa Y, Wong CH (1992) Unusual stereoselectivity in sialic acid aldolase-catalyzed aldol condensations: synthesis of both enantiomers of high-carbon monosaccharides. J Am Chem Soc 114:10138–10145

    Article  CAS  Google Scholar 

  • Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS, Piercey JE, Ramlakhan D, Todd M, Dawson MJ (1997) An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme Microb Technol 20:393–400

    Article  CAS  Google Scholar 

  • Maru I, Ohnishi J, Ohta Y, Tsukada Y (1998) Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-d-glucosamine and pyruvate using N-acyl-d-glucosamine 2-epimerase and N-acetylneuraminate lyase. Carbohydr Res 306:575–578

    Article  CAS  Google Scholar 

  • Maru I, Ohnishi J, Ohta Y, Tsukada Y (2002) Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-acylglucosamine 2-epimerase. J Biosci Bioeng 93:258–265

    Article  CAS  Google Scholar 

  • Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:243–255

    Article  CAS  Google Scholar 

  • Moscona A (2005) Neuraminidase inhibitors for influenza. New Engl J Med 353:1363–1373

    Article  CAS  Google Scholar 

  • Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38:181–191

    Article  CAS  Google Scholar 

  • Ofek I, Sharon N (2002) A bright future for anti-adhesion therapy of infectious diseases. Cell Mol Life Sci 59:1666–1667

    Article  CAS  Google Scholar 

  • Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83

    Article  CAS  Google Scholar 

  • Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9

    Google Scholar 

  • Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK, Hakomori S, Paulson JC (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-lex. Science 250:1130–1132

    Article  CAS  Google Scholar 

  • Plumbridge J, Vimr E (1999) Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol 181:47–54

    CAS  Google Scholar 

  • Rodriguez-Aparicio LB, Ferrero MA, Reglero A (1995) N-acetyl-d-neuraminic acid synthesis in Escherichia coli K1 occurs through condensation of N-acetyl-d-mannosamine and pyruvate. Biochem J 308(Pt 2):501–505

    CAS  Google Scholar 

  • Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499

    Article  CAS  Google Scholar 

  • Schauer R, Shukla AK, Schröder C, Müller E (1984) The anti-recognition function of sialic acids: studies with erythrocytes and macrophages. Pure Appl Chem 56:907–921

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  Google Scholar 

  • Schmidt RR, Behrendt M, Toepfer A (1990) Nitriles as solvents in glycosylation reactions: highly selective β-glycoside synthesis. Synlett 11:694–696

    Article  Google Scholar 

  • Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  Google Scholar 

  • Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760:527–537

    CAS  Google Scholar 

  • Sharon N, Ofek I (2000) Safe as mother's milk: carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconj J 17:659–664

    Article  CAS  Google Scholar 

  • Shimatani M, Uchida Y, Matsuno I, Oyoshi M, Ishiyama Y (1993) Process for manufacturing sialic acids-containing composition. Patent US :5270462

  • Simon PM, Goode PL, Mobasseri A, Zopf D (1997) Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect Immun 65:750–757

    CAS  Google Scholar 

  • Soundararajan V, Tharakaraman K, Raman R, Raguram S, Shriver Z, Sasisekharan V, Sasisekharan R (2009) Extrapolating from sequence—the 2009 H1N1 ‘swine’ influenza virus. Nat Biotechnol 27:510–513

    Article  CAS  Google Scholar 

  • Spivak CT, Roseman S (1959) Preparation of N-acetyl-d-mannosamine (2-acetamido-2-deoxy-d-mannose) and d-mannosamine hydrochloride (2-amino-2-deoxy-d-mannose). J Am Chem Soc 81:2403–2404

    Article  CAS  Google Scholar 

  • Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  Google Scholar 

  • Sugai T, Kuboki A, Hiramatsu S, Okazaki H, Ohta H (1995) Improved enzymatic procedure for a preparative-scale synthesis of sialic acid and KDN. Bull Chem Soc Jpn 68:3581–3589

    Article  CAS  Google Scholar 

  • Tabata K, Koizumi S, Endo T, Ozaki A (2002) Production of N-acetyl-d-neuraminic acid by coupling bacteria expressing N-acetyl-d-glucosamine 2-epimerase and N-acetyl-d-neuraminic acid synthetase. Enzyme Microb Technol 30:327–333

    Article  CAS  Google Scholar 

  • Traving C, Schauer R (1998) Structure, function and metabolism of sialic acids. Cell Mol Life Sci 54:1330–1349

    Article  CAS  Google Scholar 

  • Tsuji S, Yamashita T, Tanaka M, Nagai Y (1988) Synthetic sialyl compounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro2a). J Neurochem 50:414–423

    Article  CAS  Google Scholar 

  • Varki NM, Varki A (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 87:851–857

    Article  CAS  Google Scholar 

  • von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974

    Article  Google Scholar 

  • von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423

    Article  Google Scholar 

  • Wang TH, Chen YY, Pan HH, Wang FP, Cheng CH, Lee WC (2009) Production of N-acetyl-d-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins. BMC Biotechnol 9:63

    Article  CAS  Google Scholar 

  • Wieser RJ, Baumann CE, Oesch F (1995) Cell-contact mediated modulation of the sialylation of contactinhibin. Glycoconj J 12:672–679

    Article  CAS  Google Scholar 

  • Xiao Z, Lv C, Gao C, Qin J, Ma C, Liu Z, Liu P, Li L, Xu P (2010) A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS ONE 5:e8860

    Article  Google Scholar 

  • Xu P, Qiu JH, Zhang YN, Chen J, Wang PG, Yan B, Song J, Xi RM, Deng ZX, Ma CQ (2007) Efficient whole-cell biocatalytic synthesis of N-acetyl-d-neuraminic acid. Adv Synth Catal 349:1614–1618

    Article  CAS  Google Scholar 

  • Yu RK, Ledeen R (1969) Configuration of the ketosidic bond of sialic acid. J Biol Chem 244:1306–1313

    CAS  Google Scholar 

  • Zhang Y, Tao F, Du M, Ma C, Qiu J, Gu L, He X, Xu P (2010) An efficient method for N-acetyl-d-neuraminic acid production using coupled bacterial cells with a safe temperature-induced system. Appl Microbiol Biotechnol 86:481–489

    Article  CAS  Google Scholar 

  • Zimmermann V, Hennemann HG, Daussmann T, Kragl U (2007) Modelling the reaction course of N-acetylneuraminic acid synthesis from N-acetyl-d-glucosamine—new strategies for the optimisation of neuraminic acid synthesis. Appl Microbiol Biotechnol 76:597–605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was partly supported by grants from the State Major Basic Research Development Program (China; Numbers: 2007CB714303 and 2007CB707803). The authors would also like to acknowledge partial financial support from National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Additional information

Fei Tao and Yinan Zhang contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, F., Zhang, Y., Ma, C. et al. Biotechnological production and applications of N-acetyl-d-neuraminic acid: current state and perspectives. Appl Microbiol Biotechnol 87, 1281–1289 (2010). https://doi.org/10.1007/s00253-010-2700-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2700-6

Keywords

Navigation