Skip to main content
Log in

The RNPP family of quorum-sensing proteins in Gram-positive bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Quorum sensing is one of several mechanisms that bacterial cells use to interact with each other and coordinate certain physiological processes in response to cell density. This mechanism is mediated by extracellular signaling molecules; once a critical threshold concentration has been reached, a target sensor kinase or response regulator is activated (or repressed), facilitating the expression of quorum sensing-dependent genes. Gram-positive bacteria mostly use oligo-peptides as signaling molecules. These cells have a special kind of quorum-sensing systems in which the receptor protein interacts directly with its cognate signaling peptide. The receptors are either Rap phosphatases or transcriptional regulators and integrate the protein family RNPP, from Rap, Npr, PlcR, and PrgX. These quorum-sensing systems control several microbial processes, like sporulation, virulence, biofilm formation, conjugation, and production of extracellular enzymes. Insights of the mechanism of protein-signaling peptide binding as well as the molecular interaction among receptor protein, signaling peptide, and target DNA have changed some earlier perceptions. In spite of the increased knowledge and the potential biotechnological applications of these quorum-sensing systems, few examples on engineering for biotechnological applications have been published. Real applications will arise only when researchers working in applied microbiology and biotechnology are aware of the importance of quorum-sensing systems for health and bioprocess applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aceves-Diez AE, Robles-Burgueño R, de la Torre M (2007) SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis. Appl Microbiol Biotechnol 76:203–209

    Article  CAS  Google Scholar 

  • Agaisse H, Gominet M, Okstad OA, Kolsto AB, Lereclus D (1999) PlcR is a pleiotropic regulator of extracelular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053

    Article  CAS  Google Scholar 

  • Anderson I, Sorokin A, Kapatral V, Reznik G, Bhattacharya A, Mikhailova N, Burd H, Joukov V, Kaznadzey D, Walunas T, D'Souza M, Larsen N, Pusch G, Liolios K, Grechkin Y, Lapidus A, Goltsman E, Chu L, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N, Ivanova N (2005) Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiol Lett 250:175–184

    Article  CAS  Google Scholar 

  • Ballering KS, Kristich CJ, Grindle SM, Oromendia A, Beattie DT, Dunny GM (2009) Functional genomics of Enteroccoccus faecalis: multiple novel genetic determinants for biofilm formation in the core genome. J Bacteriol 191:2806–2814

    Article  CAS  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    Google Scholar 

  • Bongiorni C, Stoessel R, Shoemaker D, Perego M (2006) Rap phosphates of virulence plasmid pX01 inhibits Bacillus anthracis sporulation. J Bacteriol 188:487–498

    Article  CAS  Google Scholar 

  • Bouillaut L, Ramarao N, Buisson C, Gilois N, Gohar M, Lereclus D, Nielsen-Leroux C (2005) FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl Environ Microbiol 71:8903–8910

    Article  CAS  Google Scholar 

  • Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L, Henry C, Gohar M, Declerck N, Lereclus D (2008) Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 36:3791–3801

    Article  CAS  Google Scholar 

  • Buttaro BA, Antiporta MH, Dunny GM (2000) Cell-associated pheromone peptide (cCF10) production and pheromone inhibition in Enterococcus faecalis. J Bacteriol 182:4926–4933

    Google Scholar 

  • Chandler JR, Flyng AR, Bryang EM, Dunny GM (2005) Specific control of endogenous cCF10 pheromone by a conserved domain of the pCF10-encoded regulatory protein PrgY in Enteroccocus faecalis. J Bacteriol 187:4830–4833

    Article  CAS  Google Scholar 

  • Core L, Perego M (2003) TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol Microbiol 49:1509–1522

    Article  CAS  Google Scholar 

  • Declerck N, Bouillaut L, Chaix D, Rugani N, Slamti L, Hoh F, Lereclus D, Arold ST (2007) Structure of PlcR: insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proc Natl Acad Sci USA 104:18490–18495

    Article  CAS  Google Scholar 

  • Donovan WP, Tan Y, Slaney AC (1997) Cloning of the nprA gene for neutral protease a of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl Environ Microbiol 63:2311–2317

    CAS  Google Scholar 

  • Dunny GM (2007) The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell–cell signaling, gene transfer, complexity and evolution. Philos Trans R Soc B 362:1185–1193

    Article  CAS  Google Scholar 

  • Dunny GM, Leonard BA (1997) Cell–cell communication in Gram-positive bacteria. Ann Rev Microbiol 51:527–564

    Article  CAS  Google Scholar 

  • Gohar M, Faegri K, Perchat S, Ravnum S, Økstad OA, Gominet M, Kolstø A-B, Lereclus D (2008) The PlcR regulon of Bacillus cereus. PLoS ONE 3:1–9

    Article  Google Scholar 

  • Gominet M, Slamti L, Gilois N, Rose M, Lereclus D (2001) Oligopeptide permease is required for expression of the Bacillus thuringiensis PlcR regulon and for virulence. Mol Microbiol 40:963–975

    Article  CAS  Google Scholar 

  • Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M (2006) Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol Microbiol 59:1714–1729

    Article  CAS  Google Scholar 

  • Hendrickx APA, Willems RJL, Bonten MJM, van Schiak W (2009) LPxTG surface proteins of enterococci. Trends Microbiol 17:423–430

    Article  CAS  Google Scholar 

  • Hsueh YH, Somers EB, Lereclus D, Lee-Wong AC (2006) Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator. Appl Environ Microbiol 72:5089–5092

    Article  CAS  Google Scholar 

  • Jiang M, Shao W, Perego M, Hoch JA (2000) Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38:535–542

    Google Scholar 

  • Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide in Gram-positive bacteria: a case of multicelular production in Gram-positive bacteria. Peptides 22:1579–1596

    Article  CAS  Google Scholar 

  • Koetje EJ, Hajdo-Milasinovic A, Kiewiet R, Bron S, Tjalsma H (2003) A plasmid-borne Rap–Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology 149:19–28

    Article  CAS  Google Scholar 

  • Kozlowicz BK, Dworkin M, Dunny GM (2006) Pheromone-inducible conjugation in Enterococcus faecalis: a model for the evolution of biological complexity? Int J Med Microbiol 296:141–147

    Article  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi S-K, Codani J-J, Connerton IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Düsterhöft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim S-Y, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Hénaut A, Hilbert H, Holsappel S, Hosono S, Hullo M-F, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee S-M, Levine A, Liu H, Masuda S, Mauël C, Médigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O'Reilly M, Ogawa K, Ogiwara A, Oudega B, Park S-H, Parro V, Pohl TM, Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin B-S, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa H-F, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  Google Scholar 

  • Lazazzera BA, Solomon JM, Grossman AD (1997) An exported peptide function itracellularly to contribute to cell density signaling in B. subtilis. Cell 89:917–925

    Article  CAS  Google Scholar 

  • Lereclus D, Agaisse H, Gominet M, Salamitou S, Sanchis V (1996) Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase c gene at the onset of the stationary phase. J Biotechnol 178:2749–2756

    CAS  Google Scholar 

  • March JC, Bentley WE (2004) Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotechnol 15:495–502

    Article  CAS  Google Scholar 

  • Nishiya Y, Imanaka T (1990) Cloning and nucleotide sequences of the Bacillus stearothermophilus neutral protease gene and its transcriptional activator gene. J Bacteriol 172:4861–4869

    CAS  Google Scholar 

  • O'Toole GA (2003) To build a biofilm. J Bacteriol 185:2687–2689

    Article  Google Scholar 

  • Ogura M, Shimane K, Asai K, Ogasawa N, Tanaka T (2003) Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol Microbiol 49:1685–1697

    Article  CAS  Google Scholar 

  • Perego M (1996) Cell–cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc Natl Acad Sci USA 93:1549–1553

    Article  CAS  Google Scholar 

  • Perego M (1997) A peptide export–import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc Natl Acad Sci USA 94:8612–8617

    Article  CAS  Google Scholar 

  • Perego MC, Higgins CF, Pearce SR, Gallagher MP, Hoch JA (1991) The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 5:173–185

    Article  CAS  Google Scholar 

  • Pottathil M, Lazazzera BA (2003) The extracellular Phr peptide–Rap phosphatase signaling circuit of Bacillus subtilis. Front Biosci 8:32–45

    Article  Google Scholar 

  • Schachter B (2003) Slimy business—the biotechnology of biofilms. Nat Biotechnol 21:361–365

    Article  CAS  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Ann Rev Microbiol 52:81–104

    Article  CAS  Google Scholar 

  • Shi K, Brown CK, Gu ZY, Kozlowicz BK, Dunny GM, Ohlendorf DH, Earhart CA (2005) Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proc Natl Acad Sci USA 102:18596–18601

    Article  CAS  Google Scholar 

  • Slamti L, Lereclus D (2002) A cell–cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–4559

    Article  CAS  Google Scholar 

  • Slamti L, Lereclus D (2005) Specificity and polymorphism of the PlcR–PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol 187:1182–1187

    Article  CAS  Google Scholar 

  • Solomon JM, Lazazzera BA, Grossman AD (1996) Purification and characterization of an extracellular peptide factor that affects two different developmental pathways. Genes Dev 10:2014–2024

    Article  CAS  Google Scholar 

  • Stephenson S, Mueller C, Jiang M, Perego M (2003) Molecular analysis of Phr peptide processing in Bacillus subtilis. J Bacteriol 185:4861–4871

    Article  CAS  Google Scholar 

  • Tjalsma H, Koetje EJ, Kiewiet R (2004) Engineering of quorum sensing systems for improved production of alkaline protease by Bacillus subtilis. J Appl Microbiol 96:569–578

    Article  CAS  Google Scholar 

  • Toma S, Del Blue M, Pirola A, Grandi G (1986) nprRl and nprR2 regulatory regions for neutral protease expression in Bacillus subtilis. J Bacteriol 167:740–743

    CAS  Google Scholar 

  • Tzeng Y, Feher VA, Cavanagh J, Perego M, Hoch JA (1998) Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase. RapB Biochemistry 37:16538–16545

    Article  CAS  Google Scholar 

  • Uehara H, Yoneda Y, Yamane K, Maruo B (1974) Regulation of neutral protease productivity in Bacillus subtilis: transformation of high protease productivity. J Bacteriol 119:82–91

    CAS  Google Scholar 

  • Uehara H, Yamane K, Maruo B (1979) Thermosensitive, extracellular neutral proteases in Bacillus subtilis: isolation, characterization, and genetics. J Bacteriol 139:583–590

    CAS  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  Google Scholar 

  • Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc B 362:1119–1134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank CONACYT for supporting this work (grant 60767 to M. de la Torre). J. Rocha-Estrada and A. Aceves-Diez were supported by a fellowship from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayra de la Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha-Estrada, J., Aceves-Diez, A.E., Guarneros, G. et al. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol 87, 913–923 (2010). https://doi.org/10.1007/s00253-010-2651-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2651-y

Keywords

Navigation