Skip to main content
Log in

OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase complex was shown to be controlled by the phosphorylation of a 15-kDa protein OdhI by different serine/threonine protein kinases. In this paper, the phosphorylation status and kinetics of OdhI dephosphorylation were assessed during glutamate producing processes triggered by either a biotin limitation or a temperature upshock from 33°C to 39°C. A dephosphorylation of OdhI in C. glutamicum 2262 was observed during the biotin-limited as well as the temperature-induced glutamate-producing process. Deletion of pknG in C. glutamicum 2262 did not affect the phosphorylation status of OdhI during growth and glutamate production phases triggered by a temperature upshock, though a 40% increase in the specific glutamate production rate was measured. These results suggest that, under the conditions analyzed, PknG is not the kinase responsible for the phosphorylation of OdhI in C. glutamicum 2262. The phosphorylation status of OdhI alone is, as expected, not the only parameter that determines the performance of a specific strain, as no clear relation between the specific glutamate production rate and OdhI phosphorylation level was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    Article  CAS  Google Scholar 

  • Barthe P, Roumestand C, Canova MJ, Kremer L, Hurard C, Molle V, Cohen-Gonsaud M (2009) Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 17:568–578

    Article  CAS  Google Scholar 

  • Bona R, Moser A (1997) Modelling of the glutamic acid production with Corynebacterium glutamicum under biotin limitation. Bioprocess Eng 17:139–142

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser JM, Lindley ND, Goergen JL (1999a) An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum. Enzyme Microb Technol 25:762–768

    Article  CAS  Google Scholar 

  • Delaunay S, Uy D, Baucher MF, Engasser JM, Guyonvarch A, Goergen JL (1999b) Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation. Metab Eng 1:334–343

    Article  CAS  Google Scholar 

  • Fiuza M, Canova MJ, Zanella-Cléon I, Becchi MA, Cozzone J, Mateos LM, Kremer L, Gil JA, Molle V (2008) From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum towards the role of PknA and PknB in cell division. J Biol Chem 283:18099–18112

    Article  CAS  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  Google Scholar 

  • Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112

    Article  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  Google Scholar 

  • Kimura E (2005) l-Glutamate production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 439–463

    Google Scholar 

  • Kimura E, Yagoshi C, Kawahara Y, Ohsumi T, Nakamatsu T, Tokuda H (1999) Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit. Biosci Biotechnol Biochem 63:1274–1278

    Article  CAS  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation: part I. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205

    Article  CAS  Google Scholar 

  • Momose H, Takagi T (1978) Glutamic acid production in biotin-rich media by temperature sensitive mutants of Brevibacterium lactofermentum, a novel fermentation process. Agric Biol Chem 10:1911–1917

    Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    Article  CAS  Google Scholar 

  • O’Hare HM, Durán R, Cerveñansky C, Bellinzoni M, Wehenkel AM, Pritsch O, Obal G, Baumgartner J, Vialaret J, Johnsson K, Alzari PM (2008) Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70:1408–1423

    Article  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700

    Article  CAS  Google Scholar 

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    Article  CAS  Google Scholar 

  • Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741

    Article  CAS  Google Scholar 

  • Shiio I, Ôtsuka SI, Takahashi M (1962) Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J Biochem 51:56–62

    CAS  Google Scholar 

  • Shimizu H, Hirasawa T (2006) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch Volker F (ed) Microbiology monographs amino acid biosynthesis—pathways regulation and metabolic engineering. Springer, Germany, pp 1–38

    Google Scholar 

  • Sun Z, Yu Z, Yang Y, Jin H, Yang H (1989) Fermentative production of L-glutamic acid from rice hydrolysate by temperature-sensitive mutant Corynebacterium crenatum N1. Gongye Weishengwu 19:9–14

    CAS  Google Scholar 

  • Takinami K, Yamada Y, Okada H (1966) Biochemical effects of fatty acids and its derivatives on L-glutamic acid fermentation. Agric Biol Chem 30:674–682

    CAS  Google Scholar 

  • Uy D, Delaunay S, Germain P, Engasser JM, Goergen JL (2003) Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J Biotechnol 104:173–184

    Article  CAS  Google Scholar 

  • Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Brodin P, Cole ST, Zimny-Arndt U, Jungblut PR, Cervenansky C, Alzari PM (2005) Proteomic identification of M tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol 350:953–963

    Article  CAS  Google Scholar 

  • Von der Osten CH, Gioannetti C, Sinskey AJ (1989) Design of a defined for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol Lett 11:11–16

    Article  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency (ANR) through the “Corypar” project (ANR-05-JCJC-0069-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Guedon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulahya, KA., Guedon, E., Delaunay, S. et al. OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum . Appl Microbiol Biotechnol 87, 1867–1874 (2010). https://doi.org/10.1007/s00253-010-2599-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2599-y

Keywords

Navigation