Skip to main content
Log in

Biosynthesis and biotechnological production of serotonin derivatives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Serotonin derivatives belong to a class of phenylpropanoid amides found at low levels in a wide range of plant species. Representative serotonin derivatives include feruloylserotonin (FS) and 4-coumaroylserotonin (CS). Since the first identification of serotonin derivatives in safflower seeds, their occurrence, biological significance, and pharmacological properties have been reported. Recently, serotonin N-hydroxycinnamoyl transferase (SHT), which is responsible for the synthesis of serotonin derivatives, was cloned from pepper (Capsicum annuum) and characterized in terms of its enzyme kinetics. Using the SHT gene, many attempts have been made to either increase the level of serotonin derivatives in transgenic plants or produce serotonin derivatives de novo in microbes by dual expression of key genes such as SHT and 4-coumarate-CoA ligase (4CL). Due to the strong antioxidant activity and other therapeutic properties of serotonin derivatives, these compounds may have high potential in treatment and prophylaxis, as cosmetic ingredients, and as major components of functional foods or feeds that have health-improving effects. This review examines the biosynthesis of serotonin derivatives, corresponding enzymes, heterologous production in plants or microbes, and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Choi SW, Park RW, Lee WJ (2002) Novel use of polyphenol compounds isolated from safflower (Carthamus tincorious L.) seeds. Korea patent 10-0354791-0000

  • Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19:9–20

    CAS  PubMed  Google Scholar 

  • Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Can J Bot 80:577–589

    CAS  Google Scholar 

  • Geerlings A, Redondo FJ, Contin A, Memelink J, van der Heijden R, Verpoorte R (2001) Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl Microbiol Biotechnol 56:420–424

    CAS  PubMed  Google Scholar 

  • Guillet G, De Luca V (2005) Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant Physiol 137:692–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagel JM, Facchini PJ (2005) Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase wound-induced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves. Planta 221:904–914

    CAS  PubMed  Google Scholar 

  • Hotta Y, Nagatsu A, Liu W, Muto T, Narumiya C, Lu X, Yajima M, Ishikawa N, Miyazeki K, Kawai N, Mizukami H, Sakakibara J (2002) Protective effects of antioxidative serotonin derivatives isolated from safflower against postischemic myocardial dysfunction. Mol Cell Biochem 238:151–162

    CAS  PubMed  Google Scholar 

  • Ishihara A, Kawata N, Matsukawa T, Iwamura H (2000) Induction of N-hydroxycinnamoyltyramine synthesis and tyramine N-hydroxycinnamoyltransferase (THT) activity by wounding in maize leaves. Biosci Biotechnol Biochem 64:1025–1031

    CAS  PubMed  Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495

    CAS  PubMed  Google Scholar 

  • Jang SM, Ishihara A, Back K (2004) Production of coumaroylserotonin and feruloylserotonin in transgenic rice expressing pepper hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl) transferase. Plant Physiol 135:346–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenett-Siems K, Weigl R, Kaloga M, Schulz J, Eich E (2003) Ipobscurines C and D: macrolactam-type indole alkaloids from the seeds of Ipomoea obscura. Phytochemistry 62:1257–1263

    CAS  PubMed  Google Scholar 

  • Kang S, Back K (2006) Enriched production of N-hydroxycinnamic acid amides and biogenic amines in pepper (Capsicum annuum) flowers. Sci Hortic 108:337–341

    CAS  Google Scholar 

  • Kang K, Back K (2009) Production of phenylpropanoid amides in recombinant Escherichia coli. Metab Eng 11:64–68

    CAS  PubMed  Google Scholar 

  • Kang K, Jang SM, Kang S, Back K (2005) Enhanced neutraceutical serotonin derivatives of rice seed by hydroxycinnamoyl-CoA:serotonin N-(hydroxycinnamoyl) transferase. Plant Sci 168:783–788

    CAS  Google Scholar 

  • Kang S, Kang K, Chung GC, Choi D, Ishihara A, Lee DS, Back K (2006) Functional analysis of the amine substrate specificity domain of pepper tyramine and serotonin N-hydroxycinnamoyltransferases. Plant Physiol 140:704–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007a) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272

    CAS  PubMed  Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007b) Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep 26:2009–2015

    CAS  PubMed  Google Scholar 

  • Kang K, Lee K, Sohn SO, Park S, Lee S, Kim SY, Kim YS, Back K (2009) Ectopic expression of serotonin N-hydroxycinnamoyltransferase and different production of phenylpropanoid amides in transgenic tomato tissues. Sci Hortic doi: 1016/j.scienta.2008.12.015

  • Koyama N, Kuribayashi K, Seki T, Kobayashi K, Furuhata Y, Suzuki K, Arisaka H, Nakano T, Amino Y, Ishii K (2006) Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. J Agric Food Chem 54:4970–4976

    CAS  PubMed  Google Scholar 

  • Koyama N, Kuribayashi K, Ishii K, Kobayashi K (2009) Composition for preventing atherosclerosis. US patent 07,485,328

  • Kumarasamy Y, Middleton M, Reid RG, Nahar L, Sarker SD (2003) Biological activity of serotonin conjugates from the seeds of Centaurea nigra. Fitoterapia 74:609–612

    CAS  PubMed  Google Scholar 

  • Lee DG, Park Y, Kim MR, Jung HJ, Seu YB, Hahm KS, Woo ER (2004) Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnol Lett 26:1125–130

    CAS  PubMed  Google Scholar 

  • Lee K, Kang K, Park M, Woo YM, Back K (2008) Endosperm-specific expression of serotonin N-hydroxycinnamoyltransferase in rice. Plant Foods Hum Nutr 63:53–57

    CAS  PubMed  Google Scholar 

  • Ly D, Kang K, Choi JY, Ishihara A, Back K, Lee SG (2008) HPLC analysis of serotonin, tryptamine, tyramine, and the hydroxycinnamic acid amides of serotonin and tyramine in food vegetables. J Med Food 11:385–389

    CAS  PubMed  Google Scholar 

  • Martin-Tanguy J (1985) The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regul 3:381–399

    CAS  Google Scholar 

  • Mijts BN, Schmidt-Dannert C (2003) Engineering of secondary metabolite pathways. Curr Opin Biotechnol 14:597–602

    CAS  PubMed  Google Scholar 

  • Murch SJ, KrishnaRaj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    CAS  PubMed  Google Scholar 

  • Nagatsu A, Zhang HL, Mizukami H, Okuyama H, Sakakibara J, Tokuda H, Nishino H (2000) Tyrosinase inhibitory and anti-tumor promoting activities of compounds isolated from safflower (Carthamus tinctorius L.) and cotton (Gossypium hirsutum L.) oil cakes. Nat Prod Lett 14:153–158

    CAS  Google Scholar 

  • Niwa T, Etoh H, Shimizu A, Shimizu Y (2000) Cis-N-(p-coumaroyl) serotonin from konnyaku, Amorphophallus konjac K. Koch. Biosci Biotechnol Biochem 64:2269–2271

    CAS  PubMed  Google Scholar 

  • Noé W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3:281–288

    PubMed  Google Scholar 

  • Park JB (2008) Serotomide and safflomide modulate forskolin-stimulated cAMP formation via 5-HT1 receptor. Phytomedicine 15:1093–1098

    CAS  PubMed  Google Scholar 

  • Park JB, Schoene N (2002) Synthesis and characterization of N-coumaroyltyramine as a potent phytochemical which arrests human transformed cells via inhibiting protein tyrosine kinases. Biochem Biophys Res Commun 292:1104–1110

    CAS  PubMed  Google Scholar 

  • Park M, Kang K, Park S, Back K (2008a) Conversion of 5-hydroxytryptophan into serotonin by tryptophan decarboxylase in plants, Escherichia coli, and yeast. Biosci Biotechnol Biochem 72:2456–2458

    CAS  PubMed  Google Scholar 

  • Park M, Kang K, Park S, Kim YS, Ha SH, Lee SW, Ahn MJ, Bae JM, Back K (2008b) Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes. Appl Microbiol Biotechnol 81:43–49

    CAS  PubMed  Google Scholar 

  • Pavlík M, Laudová V, Grüner K, Vokáč K, Harmatha J (2002) High-performance liquid chromatographic analysis and separation of N-feruloylserotonin isomers. J Chromatogr 770:291–295

    Google Scholar 

  • RadWanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roh JS, Han JY, Kim JH, Hwang JK (2004) Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol Pharm Bull 27:1976–1978

    CAS  PubMed  Google Scholar 

  • Ryan MD, King AMQ, Thomas GP (1991) Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol 72:2727–2732

    CAS  PubMed  Google Scholar 

  • Sakamura S, Terayama Y, Kawakatsu S, Ichihara A, Saito H (1978) Conjugated serotonins related to cathartic activity in safflower seed (Carthamus tinctorius L.). Agric Biol Chem 42:1805–1806

    CAS  Google Scholar 

  • Sarker SD, Laird A, Nahar L, Kumarasamy Y, Jaspars M (2001) Indole alkaloids from the seeds of Centaurea cyanus (Asteraceae). Phytochemistry 57:1273–1276

    CAS  PubMed  Google Scholar 

  • Schröder P, Abele C, Gohr P, Stuhlfauth-Roisch U, Grosse W (1999) Latest on the enzymology of serotonin biosynthesis in walnut seeds. Adv Exp Med Biol 467:637–644

    PubMed  Google Scholar 

  • Shoeb M, MacManus S, Jaspars M, Trevidu J, Nahar L, Kong-Thoo-Lin P, Sarker SD (2006) Montamine, a unique dimeric indole alkaloid, from the seeds of Centaurea montana (Asteraceae), and its in vitro cytotoxic activity against the CaCo2 colon cancer cells. Tetrahedron 62:11172–11177

    CAS  Google Scholar 

  • Takii T, Hayashi M, Hiroma H, Chiba T, Kawashima S, Zhang HL, Nagatsu A, Sakakibara J, Onozaki K (1999) Serotonin derivative, N-(p-coumaroyl) serotonin, isolated from safflower (Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF). J Biochem 125:910–915

    CAS  PubMed  Google Scholar 

  • Takii T, Kawashima S, Chiba T, Hayashi H, Hayashi M, Hiroma H, Kimura H, Inukai Y, Shibata Y, Nagatsu A, Sakakibara J, Oomoto Y, Hirose K, Onozaki K (2003) Multiple mechanisms involved in the inhibition of proinflammatory cytokine production from human monocytes by N-(p-coumaroyl) serotonin and its derivatives. Immunopharmacology 3:273–277

    CAS  Google Scholar 

  • Tanaka E, Tanaka C, Mori N, Kuwahara Y, Tsuda M (2003) Phenylpropanoid amides of serotonin accumulate in witchs’ broom diseased bamboo. Phytochemistry 64:965–969

    CAS  PubMed  Google Scholar 

  • Tozawa Y, Hasegawa H, Teruhiko T, Wakasa K (2001) Characterization of rice anthranilate synthase α-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant OASA1. Plant Physiol 126:1493–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47:4500–4505

    CAS  PubMed  Google Scholar 

  • Wink M (1997) Special nitrogen metabolism. In: Dey PM, Harborne JB (eds) Plant Biochemistry. Academic, San Diego, pp 439–486

    Google Scholar 

  • Yamamotová A, Pometlova M, Harmatha J, Raskova H, Rokyta R (2007) The selective effect of N-feruloylserotonins isolated from Leuzea carthamoides on nociception and anxiety in rats. J Ethnopharm 112:368–374

    Google Scholar 

  • Yuji N, Naoto K, Katsuya S, Hideaki K, Yuka I (2007) Anti-inflammatory composition. PCT patent 2007129743

  • Zhang HL, Nagatsu A, Sakakibara J (1996) Novel antioxidants from safflower (Carthamus tinctorius L.) oil cake. Chem Pharm Bull 44:874–876

    CAS  Google Scholar 

Download references

Acknowledgments

Thanks are expressed to Prof. A. Ishihara of the Graduate School of Kyoto University (Kyoto, Japan) for technical support. This work was supported by the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture, Forestry, and Fisheries, and by the SRC program of MOST/KOSEF, through the Agricultural Plant Stress Research Center (R11-2001-092-05001-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungwhan Back.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, K., Park, S., Kim, Y.S. et al. Biosynthesis and biotechnological production of serotonin derivatives. Appl Microbiol Biotechnol 83, 27–34 (2009). https://doi.org/10.1007/s00253-009-1956-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1956-1

Keywords

Navigation