Skip to main content
Log in

Stereospecificity of myo-inositol hexakisphosphate hydrolysis by a protein tyrosine phosphatase-like inositol polyphosphatase from Megasphaera elsdenii

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Inositol polyphosphatases (IPPases), particularly those that can hydrolyze myo-inositol hexakisphosphate (Ins P6), are of biotechnological interest for their ability to reduce the metabolically unavailable organic phosphate content of feedstuffs and to produce lower inositol polyphosphates (IPPs) for research and pharmaceutical applications. Here, the gene coding for a new protein tyrosine phosphatase (PTP)-like IPPase was cloned from Megasphaera elsdenii (phyAme), and the biochemical properties of the recombinant protein were determined. The deduced amino acid sequence of PhyAme is similar to known PTP-like IPPases (29–44% identity), and the recombinant enzyme displayed strict specificity for IPP substrates. Optimal IPPase activity was displayed at an ionic strength of 250 mM, a pH of 5.0, and a temperature of 60°C. In order to elucidate its stereospecificity of Ins P6 dephosphorylation, a combination of high-performance ion-pair chromatography and kinetic studies was conducted. PhyAme displayed a stereospecificity that is unique among enzymes belonging to this class in that it preferentially cleaved Ins P6 at one of two phosphate positions, 1D-3 or 1D-4. PhyAme followed two distinct and specific routes of hydrolysis, predominantly degrading Ins P6 to Ins(2)P via: (a) 1D-Ins(1,2,4,5,6)P5, 1D-Ins(1,2,5,6)P4, 1D-Ins(1,2,6)P3, and 1D-Ins(1,2)P2 (60%) and (b) 1D-Ins(1,2,3,5,6)P5, 1D-Ins(1,2,3,6)P4, Ins(1,2,3)P3, and d/l-Ins(1,2)P2 (35%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Baldi P, Pollastri G (2003) The principled design of large-scale recursive neural network architectures-dag-rnns and the protein structure prediction problem. J Mach Learn Res 4:575–603

    Google Scholar 

  • Batten GD, Lott JNA (1986) The influence of phosphorus nutrition on the appearance and composition of globoid crystals in wheat aleurone cells. Cereal Chem 63:14–18

    CAS  Google Scholar 

  • Bendtsen JD, Nielson H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Billington DC (1993) The inositol phosphates. Chemical synthesis and biological significance. VCH, New York, NY

    Google Scholar 

  • Brailoiu E, Miyamoto MD, Dun NJ (2003) Inositol derivatives modulate spontaneous transmitter release at the frog neuromuscular junction. Neuropharmacology 45:691–701

    Article  CAS  Google Scholar 

  • Brancaccio M, Legendre GG (1979) Megasphaera elsdenii Endocarditis. J Clin Microbiol 10:72–74

    Article  CAS  Google Scholar 

  • Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) Scratch: a protein structure and structural feature prediction server. Nucl Acids Res 33:W72–W76

    Article  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucl Acids Res 31:3497–3500

    Article  CAS  Google Scholar 

  • Cho CY, Koo SH, Wang Y, Callaway S, Hedrick S, Mak PA, Orth AP, Peters EC, Saez E, Montminy M, Schultz PG, Chanda SK (2006) Identification of the tyrosine phosphatase ptp-meg2 as an antagonist of hepatic insulin signaling. Cell Metab 3:367–378

    Article  CAS  Google Scholar 

  • Chu HM, Guo RT, Lin TW, Chou CC, Shr HL, Lai HL, Tang TY, Cheng KJ, Selinger BL, Wang AHJ (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP-phytase fold and mechanism for sequential substrate hydrolysis. Structure 12:2015–2024

    Article  CAS  Google Scholar 

  • Elsden SR, Volcani BE et al (1956) Properties of a fatty acid forming organism isolated from the rumen of sheep. J Bacteriol 72:681–689

    Article  CAS  Google Scholar 

  • Fassler J, Nadel C, Richardson N, McEntyre J, Schuler G, McGinnis S, Pongor S (2000) NCBI website. from http://www.ncbi.nlm.nih.gov/

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the expasy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  • Greer J (1981) Comparative model-building of the mammalian serine proteases. J Mol Biol 153:1027–1042

    Article  CAS  Google Scholar 

  • Greiner R, Konietzny U (1996) Construction of a bioreactor to produce special breakdown products of phytate. J Biotechnol 48:153–159

    Article  CAS  Google Scholar 

  • Greiner R, Alminger ML, Carlsson NG, Muzquiz M, Burbano C, Cuadrado C, Pedrosa MM, Goyoaga C (2002a) Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds. J Agric Food Chem 50:6865–6870

    Article  CAS  Google Scholar 

  • Greiner R, Farouk A, Alminger ML, Carlsson NG (2002b) The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate-degrading enzymes of different Bacillus spp. Can J Microbiol 48:986–994

    Article  CAS  Google Scholar 

  • Haikara A, Helander I (2006) Pectinatus, Megasphaera and Zymophilus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, volume 4. Springer Science & Business Media, New York, pp 965–981

    Chapter  Google Scholar 

  • Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-pk and stimulation of double-strand break repair. Cell 102:721–729

    Article  CAS  Google Scholar 

  • Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 37:791–812

    Article  CAS  Google Scholar 

  • Koppolu A, Clements LD (2004) Ruminal waste stream as a source of industrial chemicals. Resour Conserv Recycl 41:215–226

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lassen SF, Breinholt J, Ostergaard PR, Brugger R, Bischoff A, Wyss M, Fuglsang CC (2001) Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe Pediades, ceriporia sp., and Trametes pubescens. Appl Environ Microbiol 67:4701–4707

    Article  CAS  Google Scholar 

  • Mullaney EJ, Ullah AHJ (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184

    Article  CAS  Google Scholar 

  • Nakashima BA, McAllister TA, Sharma R, Selinger LB (2007) Diversity of phytases in the rumen. Microb Ecol 53:82–88

    Article  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW II (1997) GeneDoc: Analysis and visualization of genetic variation. from http://www.psc.edu/biomed/genedoc

  • Ohkawa T, Ebisuno S, Kitagawa M, Morimoto S, Miyazaki Y, Yasukawa S (1984) Rice bran treatment for patients with hypercalciuric stones: experimental and clinical studies. J Urol 132:1140–1145

    Article  CAS  Google Scholar 

  • Orchiston EA, Bennett D, Leslie NR, Clarke RG, Winward L, Downes CP, Safrany ST (2004) Pten m-cbr3, a versatile and selective regulator of inositol 1,3,4,5,6-pentakisphosphate (ins(1,3,4,5,6)p-5)—evidence for Ins(1,3,4,5,6)p-5 as a proliferative signal. J Biol Chem 279:1116–1122

    Article  CAS  Google Scholar 

  • Phillippy BQ, Bland JM (1988) Gradient ion chromatography of inositol phosphates. Anal Biochem 175:162–166

    Article  CAS  Google Scholar 

  • Pollastri G, Przybylski D, Rost B, Baldi P (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235

    Article  CAS  Google Scholar 

  • Priefer U, Simon R, Pühler A (1984) Cloning with cosmids. In: Pühler A, Timmis KN (eds) Advanced molecular genetics. Springer, New York, pp 190–201

    Google Scholar 

  • Puhl AA, Gruninger RJ, Greiner R, Janzen TW, Mosimann SC, Selinger LB (2007) Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Protein Sci 16:1368–1378

    Article  CAS  Google Scholar 

  • Puhl AA, Greiner R, Selinger LB (2008a) Kinetics, substrate specificity, and stereospecificity of two new protein tyrosine phosphatase-like inositol polyphosphatases from Selenomonas lacticifex. Biochem Cell Biol 86:322–330

    Article  CAS  Google Scholar 

  • Puhl AA, Greiner R, Selinger LB (2008b) A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate. Int J Biochem Cell Biol 40:2053–2064

    Article  CAS  Google Scholar 

  • Ruf JC, Ciavatti M, Gustafsson T, Renaud S (1994) In-vitro effect of d-myo-inositol 1,2,6-trisphosphate (PP-56) on aggregation of platelets from normal and diabetic rats—relationship to malondialdehyde release and phosphoinositide pathway. Can J Physiol Pharmacol 72:644–649

    Article  CAS  Google Scholar 

  • Sasakawa N, Sharif M, Hanley MR (1995) Metabolism and biological-activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem Pharmacol 50:137–146

    Article  CAS  Google Scholar 

  • Scott HW, Dehority BA (1965) Vitamin requirements of several cellulolytic bacteria. J Bacteriol 89:1169–1175

    Article  CAS  Google Scholar 

  • Shears SB (2001) Assessing the omnipotence of inositol hexakisphosphate. Cell Signal 13:151–158

    Article  CAS  Google Scholar 

  • Skoglund E, Carlsson NG, Sandberg AS (1998) High-performance chromatographic separation of inositol phosphate isomers on strong anion exchange columns. J Agric Food Chem 46:1877–1882

    Article  CAS  Google Scholar 

  • Wohlt JF-, Sniffen CJ, Hoover WH (1973) Measurement of protein solubility in common feedstuffs. J Dairy Sci 56:1052–1057

    Article  CAS  Google Scholar 

  • Yanke LJ, Bae HD, Selinger LB, Cheng K-J (1998) Survey of phytase activity in anaerobic rumen bacteria. Microbiol 144:1565–1573

    Article  CAS  Google Scholar 

  • Zhang Z, Song Y, Wang XL (2005) Inositol hexaphosphate-induced enhancement of natural killer cell activity correlates with suppression of colon carcinogenesis in rats. World J Gastroenterol 11:5044–5046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. Brent Selinger receives funding from the Natural Sciences and Engineering Research Council (NSERC) and the Advanced Foods and Materials Network (AFMNet). Thanks to L. J. Yanke, Agriculture and Agri-Food Canada (Lethbridge, Alberta), for supplying the M. elsdenii cultures. Analysis of the isomers of the individual myo-inositol phosphate derivatives by N.-G. Carlsson, Chalmers University of Technology (Göteborg, Sweden), is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brent Selinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puhl, A.A., Greiner, R. & Selinger, L.B. Stereospecificity of myo-inositol hexakisphosphate hydrolysis by a protein tyrosine phosphatase-like inositol polyphosphatase from Megasphaera elsdenii . Appl Microbiol Biotechnol 82, 95–103 (2009). https://doi.org/10.1007/s00253-008-1734-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1734-5

Keywords

Navigation