Skip to main content
Log in

Metabolic engineering of Escherichia coli to enhance phenylalanine production

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The global regulatory system of Escherichia coli, carbon storage regulator (Csr), was engineered to increase the intracellular concentration of phosphoenolpyruvate. We examined the effects of csrA and csrD mutations and csrB overexpression on phenylalanine production in E. coli NST37 (NST). Overexpression of csrB led to significantly greater phenylalanine production than csrA and csrD mutations (2.33 vs 1.67 and 1.61 g l−1, respectively; P < 0.01). Furthermore, the overexpression of csrB was confirmed by the observed increase in csrB transcription level. We also determined the effect of overexpressing transketolase A (TktA) or glucose-6-phosphate dehydrogenase (Zwf) in NST and the csrA mutant of NST (NSTCSRA) on phenylalanine production. The NSTCSRA strain overexpressing TktA (NSTCSRA [pTktA]) produced significantly more phenylalanine than that of Zwf (2.39 vs 1.61 g l−1; P > 0.01). Furthermore, we examined the effect of overexpressing TktA, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (AroFFR), and chorismate mutase/prephenate dehydratase (PheAFR) together in NSTCSRA (NSTCSRA [pTkaFpA]). It is interesting to note that NSTCSRA [pTkaFpA] produced significantly less phenylalanine than both NSTCSRA [pTktA] and NST overexpressing csrB (NST [pCsrB]) (1.84 vs 2.39 and 2.33 g l−1, respectively; P < 0.01). Thus, csrB overexpression or csrA mutation in combination with tktA overexpression was more effective than previous approaches that targeted the glycolytic or aromatic pathway enzymes for enhancing phenylalanine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altier C, Suyemoto M, Lawhon SD (2000) Regulation of Salmonella enterica Serovar typhimurium invasion genes by csrA. Infect Immun 68:6790–6797

    Article  CAS  Google Scholar 

  • Backman KC, Balakrishnan R (1988) Enzyme deregulation. US Patent No. 4,753,883

  • Berry A (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256

    Article  CAS  Google Scholar 

  • Bongaerts J, Krämer M, Müller U, Raevev L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300

    Article  CAS  Google Scholar 

  • Flores S, de Ande-Herrera R, Gosset G, Bolívar FG (2004) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 87:485–494

    Article  CAS  Google Scholar 

  • Fotheringham I, Ton J, Higgins C (1994) Materials and methods for hypersecretion of amino acids. US Patent No. 5,354,672

  • Gudapaty S, Suzuki K, Wang X, Babitzke P, Romeo T (2001) Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J Bacteriol 183:6017–6027

    Article  CAS  Google Scholar 

  • Hudson GS, Davidson BE (1984) Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12. J Mol Biol 180:1023–1051

    Article  CAS  Google Scholar 

  • Liu MY, Romeo T (1997) The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179:4639–4642

    Article  CAS  Google Scholar 

  • Liu MY, Gui G, Wei B, Preston JF, Oakford L, Yuksel U, Giedroc DP, Romeo T (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272:17502–17510

    Article  CAS  Google Scholar 

  • Lu JL, Liao JC (1997) Metabolic engineering and control analysis for production of aromatics: Role of transketolase. Biotechnol Bioeng 53:132–138

    Article  CAS  Google Scholar 

  • McCaman MW, Robin E (1962) Fluorimetric method for the determination of phenylalanine in serum. J Lab Clin Med 59:885–890

    CAS  Google Scholar 

  • Patnaik R, Liao JC (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908

    Article  CAS  Google Scholar 

  • Patnaik R, Spitzer RG, Liao JC (1995) Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiomeric analysis by independent modulation of AroG, TktA, and Pps activities. Biotechnol Bioeng 46:361–370

    Article  CAS  Google Scholar 

  • Romeo T, Tatarko M (2000) A global regulator used to enhance the synthesis of aromatic substances. PCT Patent Publication No. WO 2000/0073484

  • Romeo T, Snoep JL (2005) In: Böck A (ed) Glycolysis and flux control. EcoSal—Escherichia coli and Salmonella: cellular and molecular biology, chapter 3.5.1. ASM, Washington, DC

    Google Scholar 

  • Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755

    Article  CAS  Google Scholar 

  • Sabnis NA, Yang H, Romeo T (1995) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem 270:29096–29104

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Suzuki K, Babitzke P, Kushner SR, Romeo T (2006) Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20:2605–2617

    Article  CAS  Google Scholar 

  • Tatarko M, Romeo T (2001) Disruption of global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr Microbiol 43:26–32

    Article  CAS  Google Scholar 

  • Tribe DE (1987) Novel microorganism and method. US Patent No. 4,681,852

  • Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, Baker CS, Georgellis D, Babitzke P, Romeo T (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48:657–670

    Article  CAS  Google Scholar 

  • Weikert C, Sauer U, Baily JE (1998) Increased phenylalanine production by growing and nongrowing Escherichia coli strain CWML2. Biotechnol Prog 14:420–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Madhyastha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakandawala, N., Romeo, T., Friesen, A.D. et al. Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol 78, 283–291 (2008). https://doi.org/10.1007/s00253-007-1307-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1307-z

Keywords

Navigation