Skip to main content
Log in

Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An isolated bacterium that converted unsaturated fatty acids to hydroxy fatty acids was identified as Stenotrophomonas nitritireducens by API analysis, cellular fatty acids compositions, sequencing the full 16S ribosomal ribonucleic acid, and evaluating its nitrite reduction ability. S. nitritireducens has unique regio-specificity for C16 and C18 cis-9 unsaturated fatty acids. These fatty acids are converted to their 10-hydroxy fatty acids without detectable byproducts. Among the cis-9-unsaturated fatty acids, S. nitritireducens showed the highest specificity for linoleic acid. The cells converted 20 mM linoleic acid to 13.5 mM 10-hydroxy-12(Z)-octadecenoic acid at 30°C and pH 7.5 with a yield of 67.5% (mol/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Assih EA, Ouattara AS, Thierry S, Cayol JL, Labat M, Macarie H (2002) Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 52:559–568

    Article  Google Scholar 

  • Bagby MO, Calson KD (1989) Chemical and biological conversion of soybean oil for industrial products. In: Cambie RC (ed) Fats for the future. Ellis Horwood, Chichester, pp 301–317

    Google Scholar 

  • Beji A, Izard D, Gavini F, Leclerc H, Leseine-Delstanche M, Krembel J (1987) A rapid chemical procedure for isolation and purification of chromosomal DNA from gram-negative bacilli. Anal Biochem 162:18–23

    Article  Google Scholar 

  • Chance DL, Gerhardt KO, Mawhinney TP (1998) Gas–liquid chromatography-mass spectrometry of hydroxy fatty acids as their methyl esters tert.-butyldimethylsilyl ethers. J Chromatogr A 793:91–98

    Article  Google Scholar 

  • Collins YF, McSweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 13:841–866

    Article  Google Scholar 

  • Finkmann W, Altenodorf K, Stackebrandt E, Lipski A (2000) Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephilitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282

    Article  Google Scholar 

  • Fukuda T, Imai Y, Komori M, Nakamura M, Kusunnose E, Satouchi K, Kusunnose M (1994) Different mechanisms of regioselection of fatty acid hydroxylation by laurate (ω-1)-hydroxylating P450s, P450 2C2 and P450 2E1. J Biochem 115:338–344

    Google Scholar 

  • Hosokawa M, Hou CT, Weisleder D (2003) Production of novel tetrahydroxyfuranyl fatty acids from γ-linolenic acid by Clavibacter sp. strain ALA2. Appl Environ Microbiol 69:3868–3873

    Article  Google Scholar 

  • Hou CT (1994a) Conversion of linoleic acid to 10-hydroxy-12(Z)-octadecenoic acid by Flavobacterium sp. (NRRL B-14859). J Am Oil Chem Soc 71:975–978

    Article  Google Scholar 

  • Hou CT (1994b) Production of 10-ketostearic acid from oleic acid by Flavobacterium sp. strain DS5 (NRRL B-14859). Appl Environ Microbiol 60:3760–3763

    Article  Google Scholar 

  • Hou CT, Bagby MO (1991) Production of new coumpound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by Pseudomonas sp. PR3. J Ind Microbiol 7:123–130

    Article  Google Scholar 

  • Hou CT, Bagby MO, Plattner RD, Koritala S (1991) A novel coumpound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by bioconversion. J Am Oil Chem Soc 68:99–101

    Article  Google Scholar 

  • Hou CT, Brown W, Labeda DP, Abbott TP, Weisleder D (1997) Microbial production of a novel trihydroxy unsaturated fatty acid from linoleic acid. J Ind Microbiol Biotechnol 19:34–38

    Article  Google Scholar 

  • Hudson JA, Morvan B, Joblin KN (1998) Hydration of linoleic acid by bacteria isolated from ruminants. FEMS Microbiol Lett 169:277–282

    Article  Google Scholar 

  • Kishimoto N, Yamamoto I, Toraishi K, Yoshioka S, Saito K, Masuda H, Fujita T (2003) Two distinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria. Lipids 38:1269–1274

    Article  Google Scholar 

  • Koritala S, Bagby MO (1992) Microbial conversion of linoleic and linolenic acids to unsaturated hydroxyl fatty acids. J Am Oil Chem Soc 69:575–578

    Article  CAS  Google Scholar 

  • Kuo TM, Kim H, Hou CT (2001) Production of a novel compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3. Curr Microbiol 43:198–203

    Article  Google Scholar 

  • Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y (2003a) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J Biol Chem 278:9761–9767

    Google Scholar 

  • Lee SO, Kim CS, Cho SM, Choi HJ, Ji GE, Oh DK (2003b) Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri. Biotechnol Lett 25:935–938

    Google Scholar 

  • Morvan B, Joblin KN (1999) Hydration of oleic acid by Enterococcus gallinarum, Pediococcus acidilactici and Lactobacillus sp. isolated from the rumen. Anarobe 5:605–611

    Google Scholar 

  • Mukerjea R, Kim D, Robyt JF (1996) Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr Res 292:11–20

    Article  Google Scholar 

  • Naughton FC (1974) Production, chemistry and commercial applications of various chemicals from castor oil. J Am Oil Chem Soc 51:65–71

    Article  Google Scholar 

  • Ogawa J, Matsumura K, Kishino S, Omura Y, Shimizu S (2001) Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67:1246–1252

    PubMed Central  Google Scholar 

  • Sasser M (1990a) Identification of bacteria though fatty acid analysis. In: Klement Z, Rudolph K, Sands DC (eds) Methods in phytobacteriology. Akademiai Kiado, Budapest, pp 199–201

    Google Scholar 

  • Sasser M (1990b) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. MIDI, Newark, Del

    Google Scholar 

  • Smibert RM, Krieg WR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  Google Scholar 

  • Yamada Y, Uemura H, Nakaya H, Sakata K, Takatori T, Nagao M, Iwase H, Iwadate K (1996) Production of hydroxy fatty acid (10-hydroxy-12(Z)-octadecenoic acid) by Lactobacillus plantarum from linoleic acid and its cardiac effects to guinea pig papillary muscles. Biochem Biophys Res Commun 226:391–395

    Article  Google Scholar 

  • Yang HC, Im WT, Kang MS, Shin DY, Lee ST (2006) Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int J Syst Evol Microbiol 56:81–84

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Second Phase of Brain Korea 21 Project (Ministry of Education and Human Resources Development) and by the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, IS., Yeom, SJ., Kim, HJ. et al. Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid. Appl Microbiol Biotechnol 78, 157–163 (2008). https://doi.org/10.1007/s00253-007-1280-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1280-6

Keywords

Navigation