Skip to main content
Log in

Biologically active components and nutraceuticals in the Monascus-fermented rice: a review

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Monascus-fermented rice has traditionally been used as a natural food colorant and food preservative of meat and fish for centuries. It has recently become a popular dietary supplement because of many of its bioactive constituents being discovered, including a series of active drug compounds, monacolins, indicated as the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors for reducing serum cholesterol level. The controversy of its safety has been provoked because a mycotoxin, citrinin, is also produced along with the Monascus secondary metabolites by certain strains or under certain cultivation conditions. This review introduces the basic production process and addresses on the compounds with bioactive functions. Current advances in avoiding the harmful ingredient citrinin are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H (2005a) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers 2:1305–1309

    Article  CAS  PubMed  Google Scholar 

  • Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005b) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J Agric Food Chem 53:562–565

    Article  CAS  PubMed  Google Scholar 

  • Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme a reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aniya Y, Ohtani II, Higa T, Miyagi C, Gibo H, Shimabukuro M, Nakanishi H, Taira J (2000) Dimerumic acid as an antioxidant of the mold, Monascus anka. Free Radic Biol Med 28:999–1004

    Article  CAS  PubMed  Google Scholar 

  • Aniya Y, Yokomakura T, Yonamine M, Shimada K, Nagamine T, Shimabukuro M, Gibo H (1999) Screening of antioxidant action of various molds and protection of Monascus anka against experimentally induced liver injuries of rats. Gen Pharmacol 32:225–231

    Article  CAS  PubMed  Google Scholar 

  • Bentrivedi A, Hirota M, Doi E, Kitabatake N (1993) Formation of a new toxic compound, citrinin h1, from citrinin on mild heating in water. J Chem Soc Perkin Trans 1:2167–2171

    Google Scholar 

  • Blanc PJ, Laussac JP, Lebars J, Lebars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterization of monascidin-a from Monascus as citrinin. Int J Food Microbiol 27:201–213

    Article  CAS  PubMed  Google Scholar 

  • Blein S, Hawrot E, Barlow P (2000) The metabotropic GABA receptor: molecular insights and their functional consequences. Cell Mol Life Sci 57:635–650

    Article  CAS  PubMed  Google Scholar 

  • Carels M, Shepherd D (1977) Effect of different nitrogen-sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol 23:1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Chagas GM, Oliveira MBM, Campello AP, Kluppel M (1992) Mechanism of citrinin-induced dysfunction of mitochondria.2. Effect on respiration, enzyme-activities, and membrane-potential of liver-mitochondria. Cell Biochem Funct 10:209–216

    Article  CAS  PubMed  Google Scholar 

  • Chagas GM, Oliveira MBM, Campello AP, Kluppel MLW (1995) Mechanism of citrinin-induced dysfunction of mitochondria. 4. Effect on Ca2+ transport. Cell Biochem Funct 13:53–59

    Article  CAS  PubMed  Google Scholar 

  • Chang JC, Wu MC, Liu IM, Cheng JT (2006) Plasma glucose-lowering action of Hon-Chi in streptozotocin-induced diabetic rats. Horm Metab Res 38:76–81

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Liu IM (2006) Release of acetylcholine by Hon-Chi to raise insulin secretion in Wistar rats. Neurosci Lett 404:117–121

    Article  CAS  PubMed  Google Scholar 

  • Chen FS, Hu XQ (2005) Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol 103:331–337

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Johns MR (1993) Effect of pH and nitrogen-source on pigment production by Monascus purpureus. Appl Microbiol Biotechnol 40:132–138

    Article  CAS  Google Scholar 

  • Chiu CH, Ni KH, Guu YK, Pan TM (2006) Production of red mold rice using a modified Nagata type koji maker. Appl Microbiol Biotechnol 73:297–304

    Article  CAS  PubMed  Google Scholar 

  • Ciegler A, Vesonder RF, Jackson LK (1977) Production and biological-activity of patulin and citrinin from Penicillium expansum. Appl Environ Microb 33:1004–1006

    Article  CAS  Google Scholar 

  • Dhale MA, Divakar S, Kumar SU, Vijayalakshmi G (2007) Isolation and characterization of dihydromonacolin-MV from Monascus purpureus for antioxidant properties. Appl Microbiol Biotechnol 73:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Endo A (1979) Monacolin-K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32:852–854

    Article  CAS  Google Scholar 

  • Endo A (1980) Monacolin-K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme a reductase. J Antibiot 33:334–336

    Article  CAS  Google Scholar 

  • Endo A, Hasumi K, Nakamura T, Kunishima M, Masuda M (1985a) Dihydromonacolin-L and monacolin-x, new metabolites those inhibit cholesterol-biosynthesis. J Antibiot 38:321–327

    Article  CAS  Google Scholar 

  • Endo A, Hasumi K, Negishi S (1985b) Monacolin-J and monacolin-l new inhibitors of cholesterol-biosynthesis produced by Monascus ruber. J Antibiot 38:420–422

    Article  CAS  Google Scholar 

  • Endo A, Hasumi K, Yamada A, Shimoda R, Takeshima H (1986) The Synthesis of compactin (Ml-236b) and monacolin-K in fungi. J Antibiot 39:1609–1610

    Article  CAS  Google Scholar 

  • Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1110

    Article  CAS  Google Scholar 

  • Hajjaj H, Blanc P, Groussac E, Uribelarrea JL, Goma G, Loubiere P (2000) Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme Microb Technol 27:619–625

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL, Pit JI (1983) A new taxonomy for Monascus species based on cultural and microscopical characters. Aust J Bot 31:51–61

    Article  Google Scholar 

  • Hesseltine CW (1965) A millenium of fungi, food and fermentation. Mycologia 57:149–197

    Article  CAS  PubMed  Google Scholar 

  • Hirota M, Menta AB, Yoneyama K, Kitabatake N (2002) A major decomposition product, citrinin H2, from citrinin on heating with moisture. Biosci Biotechnol Biochem 66:206–210

    Article  CAS  PubMed  Google Scholar 

  • Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawada T, Lim BO, Park DK (2004) Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 75:3195–3203

    Article  CAS  PubMed  Google Scholar 

  • Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    Article  CAS  Google Scholar 

  • Kerr DIB, Ong J (1995) GABAB receptors. Pharmacol Ther 67:187–246

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Komagata D, Murakawa S, Endo A (1990) Biosynthesis of monacolins—conversion of monacolin-J to monacolin-K (Mevinolin). J Antibiot 43:1621–1622

    Article  CAS  Google Scholar 

  • Kitabatake N, Trivedi AB, Doi E (1991) Thermal-decomposition and detoxification of citrinin under various moisture conditions. J Agric Food Chem 39:2240–2244

    Article  CAS  Google Scholar 

  • Kohama Y, Matsumoto S, Mimura T, Tanabe N, Inada A, Nakanishi T (1987) Isolation and identification of hypotensive principles in red-mold rice. Chem Pharm Bull 35:2484–2489

    Article  CAS  Google Scholar 

  • Komagata D, Shimada H, Murakawa S, Endo A (1989) Biosynthesis of monacolins—conversion of monacolin-L to monacolin-J by a monooxygenase of Monascus ruber. J Antibiot 42:407–412

    Article  CAS  Google Scholar 

  • Krejci ME, Bretz NS, Koechel DA (1996) Citrinin produces acute adverse changes in renal function and ultrastructure in pentobarbital-anesthetized dogs without concomitant reductions in [potassium](plasma). Toxicology 106:167–177

    Article  CAS  PubMed  Google Scholar 

  • Lee CL, Wang JJ, Kuo SL, Pan TM (2006) Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent—monacolin K and antiinflammation agent—monascin. Appl Microbiol Biotechnol 72:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Li YG, Zhang F, Wang ZT, Hu ZB (2004) Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J Pharm Biomed Anal 35:1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Li TC, Lai MM (2005) Efficacy and safety of Monascus purpureus Went rice in subjects with hyperlipidemia. Eur J Endocrinol 153:679–686

    Article  CAS  PubMed  Google Scholar 

  • Lin CF (1973) Isolation and cultural conditions of Monascus sp for production of pigment in a submerged culture. J Ferment Technol 51:407–414

    CAS  Google Scholar 

  • Lin CF, Suen SJT (1973) Isolation of hyperpigment-productive mutants of Monascus sp-F-2. J Ferment Technol 51:757–759

    CAS  Google Scholar 

  • Lin TF, Demain AL (1994) Leucine interference in the production of water-soluble red Monascus pigments. Arch Microbiol 162:114–119

    Article  CAS  Google Scholar 

  • Lin WY, Ting YC, Pan TM (2007) Proteomic response to intracellular proteins of Monascus pilosus grown under phosphate-limited complex medium with different growth rates and pigment production. J Agric Food Chem 55:467–474

    Article  CAS  PubMed  Google Scholar 

  • Lotong N, Suwanarit P (1990) Fermentation of Ang-Kak in plastic bags and regulation of pigmentation by initial moisture-content. J Appl Bacteriol 68:565–570

    Article  CAS  Google Scholar 

  • Mabuchi H, Haba T, Tatami R, Miyamoto S, Sakai Y, Wakasugi T, Watanabe A, Koizumi J, Takeda R (1981) Effects of an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme-a reductase on serum-lipoproteins and ubiquinone-10 levels in patients with familial hypercholesterolemia. New Engl J Med 305:478–482

    Article  CAS  PubMed  Google Scholar 

  • Martinkova L, Juzlova P, Vesely D (1995) Biological-activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616

    Article  CAS  Google Scholar 

  • Martinkova L, Patakova-Juzlova P, Kren V, Kucerova Z, Havlicek V, Olsovsky P, Hovorka O, Rihova B, Vesely D, Vesela D, Ulrichova J, Prikrylova V (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam 16:15–24

    Article  CAS  PubMed  Google Scholar 

  • McHan F, Johnson GT (1970) Zinc and amino acids: important components of a medium promoting growth of Monascus purpureus. Mycologia 62:1018–1031

    Article  CAS  Google Scholar 

  • Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanabe A, Kariyama M (2005) Light effects on cell development and secondary metabolism in Monascus. J Ind Microbiol Biotech 32:103–108

    Article  CAS  Google Scholar 

  • Pisareva E, Savov V, Kujumdzieva A (2005) Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Zeitschrift Fur Naturforschung C-a. J Biosci 60:116–120

    CAS  Google Scholar 

  • Ribeiro SMR, Chagas GM, Campello AP, Kluppel MLW (1997) Mechanism of citrinin-induced dysfunction of mitochondria. 5. Effect on the homeostasis of the reactive oxygen species. Cell Biochem Funct 15:203–209

    Article  CAS  PubMed  Google Scholar 

  • Sabater-Vilar M, Maas RFM, Fink-Gremmels J (1999) Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutat Res Genet Toxicol Environ Mutagen 444:7–16

    Article  CAS  Google Scholar 

  • Sato K, Naito I (1935) Acids and alcohols as nutrients for Monascus. J Agric Chem Soc Jpn 11:473–479

    CAS  Google Scholar 

  • Song YX (1966) T’ien-kung k’ai-wu: Chinese technology in the seventeenth century. Pennsylvania State University Press, University Park, PA

    Google Scholar 

  • Steinkraus KH (ed) (1983) Handbook of indigenous fermented foods. Dekker, New York

  • Su NW, Lin YL, Lee MH, Ho CY (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J Agric Food Chem 53:1949–1954

    Article  CAS  PubMed  Google Scholar 

  • Su YC (2001) Anka (Red-Koji) products and it’s research development in Taiwan (in Chinese). In: Symposium on Functional Fermentation Products. Taipei, Taiwan, pp 67–112

  • Su YC, Chen WL, Fang HY, Wong HC, Wang WH (1970) Mycological study of Monascus anka (in Chinese). J Chin Agric Chem Soc 8:46–54

    Google Scholar 

  • Su YC, Huang JH (1976) Studies on the production of Anka-pigment. J Chin Agric Chem Soc 14:45–58

    CAS  Google Scholar 

  • Su YC, Wang WH (1977) Chinese red rice-anka. Symposium on Indigenous Fermented Foods. Bangkok, Thailand

  • Taira J, Miyagi C, Aniya Y (2002) Dimerumic acid as an antioxidant from the mold, Monascus anka: the inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem Pharmacol 63:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Teng SS, Feldheim W (2000) The fermentation of rice for anka pigment production. J Ind Microbiol Biotech 25:141–146

    Article  CAS  Google Scholar 

  • The Ministry of Health and Welfare of Japan (2000) Monascus color. Japan’s specifications and standards for food additives (7th edn.), Sect. D257.

  • van Tieghem M (1884) Monascus genre nouvear de l’ondre des Ascomycetes. Bull Soc Bot Fr 31:226–231

    Article  Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2003) Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotech 30:669–676

    Article  CAS  Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2004) Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric Food Chem 52:6977–6982

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Pan TM (2003) Effect of red mold rice supplements on serum and egg yolk cholesterol levels of laying hens. J Agric Food Chem 51:4824–4829

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Pan TM, Shieh MJ, Hsu CC (2006) Effect of red mold rice supplements on serum and meat cholesterol levels of broilers chicken. Appl Microbiol Biotechnol 71:812–818

    Article  CAS  PubMed  Google Scholar 

  • Wang YZ, Ju XL, Zhou YG (2005) The variability of citrinin production in Monascus type cultures. Food Microbiol 22:145–148

    Article  CAS  Google Scholar 

  • Watanabe M, Maemura K, Oki K, Shiraishi N, Shibayama Y, Katsu K (2006) Gamma-aminobutyric acid (GABA) and cell proliferation: focus on cancer cells. Histol Histopathol 21:1135–1141

    CAS  PubMed  Google Scholar 

  • Went FAFC (1895) Monascus purpureus, le champignon de 1’Ang-Quac, une nouvelle Thélébolée. Ann Sci Nat Bot VIII(1):1–18

    Google Scholar 

  • Wong HC, Bau YS (1977) Pigmentation and antibacterial activity of fast neutron-ray and X-ray-induced strains of Monascus purpureus Went. Plant Physiol 60:578–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto A, Sudo H, Endo A (1980) Therapeutic effects of Ml-236b in primary hypercholesterolemia. Atherosclerosis 35:259–266

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa K, Akihisa T, Oinuma H, Kaminaga T, Kanno H, Kasahara Y, Tamura T, Kumaki K, Yamanouchi S, Takido M (1996) Inhibitory effect of taraxastane-type triterpenes on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology 53:341–344

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa K, Takahashi M, Natori S, Kawai K, Yamazaki M, Takeuchi M, Takido M (1994) Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in 2-stage carcinogenesis in Mice. Oncology 51:108–112

    Article  CAS  PubMed  Google Scholar 

  • Young EM (1930) Physiological studies in relation to the taxonomy of Monascus spp. In: Juday C (ed) Transactions of the Wisconsin Academy of Sciences, Arts and Letters. Wisconsin Academy of Sciences, Madison, WI, p 227(plate 224ff)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Wei Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YL., Wang, TH., Lee, MH. et al. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77, 965–973 (2008). https://doi.org/10.1007/s00253-007-1256-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1256-6

Keywords

Navigation