Skip to main content
Log in

Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum is an important microorganism in the industrial production of amino acids. We engineered a strain of C. glutamicum that secretes α-amylase from Streptococcus bovis 148 (AmyA) for the efficient utilization of raw starch. Among the promoters and signal sequences tested, those of cspB from C. glutamicum possessed the highest expression level. The fusion gene was introduced into the homoserine dehydrogenase gene locus on the chromosome by homologous recombination. L-Lysine fermentation was conducted using C. glutamicum secreting AmyA in the growth medium containing 50 g/l of raw corn starch as the sole carbon source at various temperatures in the range 30 to 40°C. Efficient L-lysine production and raw starch degradation were achieved at 34 and 37°C, respectively. The α-amylase activity using raw corn starch was more than 2.5 times higher than that using glucose as the sole carbon source during L-lysine fermentation. AmyA expression under the control of cspB promoter was assumed to be induced when raw starch was used as the sole carbon source. These results indicate that efficient simultaneous saccharification and fermentation of raw corn starch to L-lysine were achieved by C. glutamicum secreting AmyA using the cspB promoter and signal sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fernadez-Gonzalez C, Cadenas RF, Noirot-Gros MF, Martin JF, Gil JA (1994) Characterization of a region of plasmid pBL1 of Brevibacterium lactofermentum involved in replication via the rolling circle model. J Bacteriol 176:3154–3161

    Article  Google Scholar 

  • Fisher JA, Smit J, Agabian N (1988) Transcriptional analysis of the major surface array gene of Caulobacter crescentus. J Bacteriol 170:4706–4713

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  Google Scholar 

  • Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Pühler A, Kalinowski J (2006) The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology 152:923–935

    Article  CAS  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechonol 104:155–172

    Article  CAS  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004a) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004b) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  Google Scholar 

  • Kahala M, Savijoki K, Palva A (1997) In vivo expression of the Lactobacillus brevis S-layer gene. J Bacteriol 179:284–286

    Article  CAS  Google Scholar 

  • Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311

    Article  CAS  Google Scholar 

  • Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl Environ Microbiol 69:358–66

    Article  CAS  Google Scholar 

  • Kondo A, Shigechi H, Abe M, Uyama K, Tatsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 58:291–296

    Article  CAS  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  Google Scholar 

  • Matsumoto N, Fukushi O, Miyanaga M, Kakihara K, Nakajima E, Yoshizumi H (1982) Industrialization of a noncooking system for alcoholilc fermentation from grains. Agric Biol Chem 46:1549–1558

    CAS  Google Scholar 

  • Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A (2006a) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70:564–572

    Article  CAS  Google Scholar 

  • Narita J, Ishida S, Okano K, Kimura S, Fukuda H, Kondo A (2006b) Improvement of protein production in lactic acid bacteria using 5′-untranslated leader sequence of slpA from Lactobacillus acidophilus. Appl Microbiol Biotechnol 73:366–373

    Article  CAS  Google Scholar 

  • Nešvera J, Pátek M, Hochmannová J, Abrhámová Z, Bečvářová V, Jelínková M, Vohradský J (1997) Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179:1525–1532

    Article  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  Google Scholar 

  • Pátek M, Muth G, Wohlleben W (2003a) Function of Corynebacterium glutamicum promoters in Escherichia coli, Streptomyces lividans, and Bacillus subtilis. J Biotechnol 104:325–334

    Article  Google Scholar 

  • Pátek M, Nešvera J, Guyonvarch A, Reyes O, Leblon G (2003b) Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323

    Article  Google Scholar 

  • Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Shechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109

    Article  CAS  Google Scholar 

  • Poo H, Song JJ, Hong SP, Choi YH, Yun SW, Kim JH, Lee SC, Lee SG, Sung MH (2002) Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-α. Biotechnol Lett 24:1185–1189

    Article  CAS  Google Scholar 

  • Satoh E, Niimura Y, Uchimura T, Kozaki M, Komagata K (1993) Molecular cloning and expression of two α-amylase genes from Streptococcus bovis 148 in Escherichia coli. Appl Environ Microbiol 59:3669–3673

    Article  CAS  Google Scholar 

  • Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124:381–391

    Article  CAS  Google Scholar 

  • Shigechi H, Fujita Y, Koh J, Ueda M, Fukuda H, Kondo A (2004) Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochem Eng J 18:149–153

    Article  CAS  Google Scholar 

  • Soual-Hoebeke E, de Sousa-D’Auria C, Chami M, Baucher MF, Guyonvarch A, Bayan N, Salim K, Leblon G (1999) S-layer production by Corynebacterium strains is dependent on the carbon source. Microbiology 145:3399–3408

    Article  CAS  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007) Production of L-lysine from starch by Corynebacterium glutamicum displaying a-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tateno, T., Fukuda, H. & Kondo, A. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77, 533–541 (2007). https://doi.org/10.1007/s00253-007-1191-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1191-6

Keywords

Navigation