Skip to main content
Log in

Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two extracellular tannin acyl hydrolases (TAH I and TAH II) produced by an Antarctic filamentous fungus Verticillium sp. P9 were purified to homogeneity (7.9- and 10.5-fold with a yield of 1.6 and 0.9%, respectively) and characterized. TAH I and TAH II are multimeric (each consisting of approximately 40 and 46 kDa sub-units) glycoproteins containing 11 and 26% carbohydrates, respectively, and their molecular mass is approximately 155 kDa. TAH I and TAH II are optimally active at pH of 5.5 and 25 and 20°C, respectively. Both the enzymes were activated by Mg2+and Br ions and 0.5–2.0 M urea and inhibited by other metal ions (Zn2+, Cu2+, K+, Cd2+, Ag+, Fe3+, Mn2+, Co2+, Hg2+, Pb2+ and Sn2+),\({\text{CO}}_{\text{3}}^{{\text{2}} - }\) anions, Tween 20, Tween 60, Tween 80, Triton X-100, sodium dodecyl sulphate, β-mercaptoethanol, α-glutathione and 4-chloromercuribenzoate. Both tannases more efficiently hydrolyzed tannic acid than methyl gallate. E a of these reactions and temperature dependence (at 0–30°C) of k cat, k cat/K m, ΔG*, ΔH* and ΔS* for both the enzymes and substrates were determined. The k cat and k cat/K m values (for both the substrates) were considerably higher for the combined preparation of TAH I and TAH II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar CN, Gutiérrez-Sánchez G (2001) Review: sources, properties, application and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7:373–382

    Article  CAS  Google Scholar 

  • Banerjee D, Mondal KC, Pati BR (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF 9. J Basic Microbiol 41:313–318

    Article  CAS  PubMed  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of a tannase from Aspergillus niger LCF 8. J Ferment Bioeng 77:320–323

    Article  CAS  Google Scholar 

  • Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem 40:1553–1557

    Article  CAS  Google Scholar 

  • Battestin V, Macedo GA (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electr J Biotechnol 10:191–199

    Article  CAS  Google Scholar 

  • Bhardwaj R, Singh B, Bhat TK (2003) Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425. J Basic Microbiol 43:449–461

    Article  CAS  PubMed  Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins—a current perspective. Biodegradation 9:343–357

    Article  CAS  PubMed  Google Scholar 

  • Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannin. Enzyme Microb Technol 28:590–595

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of milligram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427

    Article  CAS  PubMed  Google Scholar 

  • Dubois MK, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric methods for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fahleson J, Hu Q, Dixelius C (2004) Phylogenetic analysis of Verticillium species based on nuclear and mitochondrial sequences. Arch Microbiol 181:435–442

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  • Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–755

    Article  Google Scholar 

  • Haslam E, Stangroom JE (1996) The esterase and depsidase activities of tannase. Biochem J 99:28–31

    Google Scholar 

  • Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175:215–221

    Article  CAS  PubMed  Google Scholar 

  • Iibuchi S, Minoda Y, Yamada K (1968) Studies on tannin acyl hydrolase of microorganisms. Part III. Purification of the enzyme and some properties of it. Agric Biol Chem 32:803–809

    CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2003) Effect of additives on the behavioral properties of tannin acyl hydrolase. Process Biochem 38:1285–1293

    Article  CAS  Google Scholar 

  • Laemmli UK (1971) Clevage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–684

    Article  Google Scholar 

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra K, Nanda RK, Bag SS, Banerjee R, Pandey A, Szakacs G (2005) Purification, characterization and same studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem 40:3251–3254

    Article  CAS  Google Scholar 

  • Mahendran B, Raman N, Kim DJ (2006) Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase. Appl Microbiol Biotechnol 70:444–450

    Article  CAS  PubMed  Google Scholar 

  • Mondal KC, Patil BR (2000) Studies on the extracellular tannase from newly isolated Bacillus licheniformis KBR 6. J Basic Microbiol 40:223–232

    Article  CAS  PubMed  Google Scholar 

  • Mondal KC, Banerjee R, Patil BR (2000) Tannase production by Bacillus licheniformis. Biotechnol Lett 22:767–769

    Article  CAS  Google Scholar 

  • Mondal KC, Banerjee D, Banerjee R, Pati BR (2001) Production and characterization of tannase from Bacillus cereus KBR9. J Gen Appl Microbiol 47:263–267

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee G, Banerjee R (2006) Effects of temperature, pH and additives on the activity of tannase produced by a co-culture Rhizopus oryzae and Aspergillus foetidus. World J Microbiol Biotechnol 22:207–212

    Article  CAS  Google Scholar 

  • Nuero OM, Reyes F (2002) Enzymes for animal feeding from Penicillium chrysogenum mycelial wastes from penicillin manufacture. Lett Appl Microbiol 34:413–416

    Article  CAS  PubMed  Google Scholar 

  • Ornstein L (1964) Disc electrophoresis. I. Background and theory. Ann NY Acad Sci 121:321–349

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar SG, Nandy SC (1983) Isolation, purification and some properties of Penicillium chrysogenum tannase. Appl Environ Microbiol 46:525–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Coronel MA, Viniegra-González G, Darvill A, Augur C (2003) A novel tannase from Aspergillus niger with beta-glucosidase activity. Microbiol 149:2941–2946

    Article  Google Scholar 

  • Sabu A, Kiran GS, Pandey A (2005) Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620. Food Technol Biotechnol 43:133–138

    CAS  Google Scholar 

  • Saxena S, Saxena RK (2004) Statistical optimization of tannase production from Penicillium variable using fruits (chebulic myrobalan) of Terminalia chebula. Biotechnol Appl Biochem 39:99–106

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Bhat TK, Darwa RK (1999) Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World J Microbiol Biotechnol 15:673–677

    Article  CAS  Google Scholar 

  • Yamada H, Adachi O, Watanabe M, Sato N (1968) Studies of fungal tannase. Part I. Formation, purification and catalytic properties of tannase of Aspergillus flavus. Agric Biol Chem 32:1070–1078

    CAS  Google Scholar 

  • Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif 36:165–169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Kasieczka-Burnecka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasieczka-Burnecka, M., Kuc, K., Kalinowska, H. et al. Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl Microbiol Biotechnol 77, 77–89 (2007). https://doi.org/10.1007/s00253-007-1124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1124-4

Keywords

Navigation