Skip to main content
Log in

Distribution of extracellular polymeric substances in aerobic granules

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Extracellular matrix provides an architectural structure and mechanical stability for aerobic granules. Distributions of cells and extracellular polymeric substances (EPS), including proteins, α- and β-d-glucopyranose polysaccharides, in acetate-fed granules and phenol-fed granules were probed using a novel quadruple staining scheme. In acetate-fed granules, protein and β-d-glucopyranose polysaccharides formed the core, whereas, the cells and α-d-glucopyranose polysaccharides accumulated in the granule outer layers. Based on these experimental findings, this study indicated that different conclusions can be obtained regarding EPS distributions when granules were stained differently. The core of phenol-fed granules, conversely, was formed principally by proteins; whereas, the cells and α- and β-d-glucopyranose polysaccharides were accumulated at an outer filamentous layer. Using a series of confocal laser scanning microscope (CLSM) images whose threshold values were determined via Otsu’s scheme, the three-dimensional distributions of cells and EPS were produced using a polygonal surface model. Structural information extracted can be applied in further development of comprehensive granule models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beun JJ, Hendriks A, Van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33:2283–2290

    Article  CAS  Google Scholar 

  • Bockelmann U, Manz W, Neu TR, Szewzyk U (2002) Investigation of lotic microbial aggregates by a combined technique of fluorescent in situ hybridization and lectin-binding analysis. J Microbiol Methods 49:75–87

    Article  Google Scholar 

  • Boessmann M, Neu TR, Horn H, Hempel DC (2004) Growth, structure and oxygen penetration in particle supported autotrophic biofilms. Water Sci Technol 49(11–12):371–377

    Article  CAS  Google Scholar 

  • Cerca N, Martins S, Sillankorva S, Jefferson KK, Pier GB, Oliveira R, Azeredo J (2005) Effects of growth in the presence of subinhibitory concentrations of dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus biofilms. Appl Environ Microbiol 71:8677–8682

    Article  CAS  Google Scholar 

  • Chiu ZC, Chen MY, Lee DJ, Tay STL, Tay JH, Show KY (2006) Diffusivity of oxygen of aerobic granules. Biotechnol Bioeng (in press)

  • Chu CP, Lee DJ (2004) Multiscale structures of biological flocs. Chem Eng Sci 59:1875–1883

    Article  CAS  Google Scholar 

  • deBeer D, Flaharty VO, Thaveesri J, Lens P, Verstraete W (1996) Distribution of extracellular polysaccharides and flotation of anaerobic sludge. Appl Microbiol Biotechnol 46:197–201

    Article  CAS  Google Scholar 

  • Jiang HL, Tay JH, Tay STL (2002) Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Letters Appl Microbiol 35:439–445

    Article  Google Scholar 

  • Lawrence JR, Swerhone GDW, Leppard GG, Araki T, Zhang X, West MM, Hitchcck AP (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69:5543–5554

    Article  CAS  Google Scholar 

  • Lawrence JR, Cheier MR, Roy R, Beaumier D, Fortin N, Swerhone GDW, Neu TR, Greer CW (2004) Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70:4326–4339

    Article  CAS  Google Scholar 

  • Lawrence JR, Swerhone GDW, Wassenaar LI, Neu TR (2005) Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol 51:655–669

    Article  CAS  Google Scholar 

  • Liu Y, Liu QS (2006) Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnol Adv 24:115–127

    Article  CAS  Google Scholar 

  • Liu Y, Tay JH (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22:533–563

    Article  CAS  Google Scholar 

  • McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057

    Article  CAS  Google Scholar 

  • Morgenroth E, Sherden T, Van Loosdrecht MCM, Heijnen JJ, Wilderer PA (1997) Aerobic granular sludge in a sequencing batch reactor. Water Res 31:3191–3194

    Article  CAS  Google Scholar 

  • Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiol 147:299–313

    Article  CAS  Google Scholar 

  • Neu TR, Woelfl S, Lawrence JR (2004) Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photon excitation). J Microbiol Methods 56:161–172

    Article  CAS  Google Scholar 

  • Peng DC, Bernet N, Delgenes JP, Moletta R (1999) Aerobic granular sludge-a case report. Water Res 33:890–893

    Article  CAS  Google Scholar 

  • Schmid M, Thill A, Purkhold U, Walcher M, Bottero JY, Ginestet P, Nielsen PH, Wuertz S, Wagner M (2003) Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Res 37:2043–2052

    Article  CAS  Google Scholar 

  • Staudt C, Horn H, Hempel DC, Neu TR (2004) Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 88:585–592

    Article  CAS  Google Scholar 

  • Strathmann M, Wingender J, Flemming HC (2002) Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods 50:237–248

    Article  CAS  Google Scholar 

  • Tay JH, Liu QS, Liu Y (2001a) Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol 91:168–175

    Article  CAS  Google Scholar 

  • Tay JH, Lin QS, Liu Y (2001b) The role of cellular polysaccharide in the formation and stability of aerobic granules. Letters Appl Microbiol 33:222–226

    Article  CAS  Google Scholar 

  • Wang ZW, Liu Y, Tay JH (2005) Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl Microbiol Biotechnol 69:469–473

    Article  CAS  Google Scholar 

  • Yang SF, Tay JH, Liu Y (2003) A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J Biotechnol 106:77–86

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.Y., Lee, D.J. & Tay, J.H. Distribution of extracellular polymeric substances in aerobic granules. Appl Microbiol Biotechnol 73, 1463–1469 (2007). https://doi.org/10.1007/s00253-006-0617-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0617-x

Keywords

Navigation